• Title/Summary/Keyword: irrigation capacity

Search Result 162, Processing Time 0.029 seconds

Assessment of Agricultural Drought Vulnerability Focus on Drought Response Capability in Irrigation Facilities and Paddy Fields (수리시설물 및 농경지 가뭄대응능력 중심의 농업가뭄 취약성 평가 - 태안 지역을 중심으로 -)

  • Mun, Young-Sik;Nam, Won-Ho;Ha, Tae-Hyun;Jo, Young-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.13-24
    • /
    • 2023
  • Due to recent climate change, the amount of rainfall during the summer season in South Korea has been decreasing, leading to an increase in areas affected by frequent droughts. Droughts have the characteristic of occurring over a wide area and being unpredictable in terms of their onset and end, necessitating proactive research to cope with them. In this study, we conducted an assessment of agricultural drought vulnerability in Taean-gun, Chungcheongnam-do, focusing on irrigation facilities and paddy fields. The assessment criteria were meteorological impact, drought occurrence status, supplementary water supply capacity, and drought response capability, with nine specific indicators selected. The drought response capability was analyzed by applying a scoring system as a key component of the agricultural drought vulnerability assessment, while the other indicators were quantified using an entropy weighting technique. The results of the assessment showed that Anmyeon-eup and Taean-eup were the safest areas, while Wonbuk-myeon, Nam-myeon, and Gonam-myeon were the most vulnerable. It is expected that the findings can be utilized to enhance understanding and proactive measures for coping with agricultural drought, and to determine the priority of drought response in different regions.

Estimation of the Optimal Dredge Amount to Maintain the Water Supply Capacity on Asan-Lake (아산호 용수공급용량 유지를 위한 적정 준설량 산정)

  • Jang Tae-Il;Kim Sang-Min;Kang Moon-Seong;Park Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • This study analyze the hydrologic conditions and the effects of selected runoff characteristics as an attempt to estimate the optimal dredge amount for Asan Lake in Korea. The runoff feature was calculated by utilizing the water balance simulation from DIROM (Daily Irrigation Reservoir Operation Model), which allowed changes in landuse to be quantified using remote sensing for 14 years. The distribution of prospective sediment deposits was been tallied based on the changes in landuse, and quantity of incoming sediment estimated. From these findings, we were then able to simulate the fluctuation of water level, gauging the pumping days not already in use, to determine the frequency of the distribution for around the. requirement annual water storage and the changing water level. The optimal dredge amount was calculated on the basis of the distribution of frequency, taking into account the design criteria for agricultural water with the 10-year frequency of resistant capacity.

Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios (RCP 시나리오 기반 농업용 저수지의 내한능력 평가)

  • Park, Na-Young;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.13-24
    • /
    • 2013
  • Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.

A Study for Sedimentation in Reservoir -on district of Chin Young- (저수지의 퇴사에 관한 연구 -진양지구를 중심으로-)

  • 류시창;민병향
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3840-3847
    • /
    • 1975
  • With 30 excisting reservoirs in the Chin-Young area, the Sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoir capacity. The reservoirs has a total drainage area of 3l4l ha, with a total capacity of 43.23 ha-m, and are short of water supply due to reduction of reservoir capacity, Annual sedimentation in the reservoir is relation to the drainage area, the mean of annual rainfall, and the slop of drainage area. The results of obtained from the investigation are summarized as follows: (1) A Sediment deposition rate is high, being about 7.03㎥/ha of drainage area, and resulting in the overage decrease of reservoir capacity by 16.1%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of tree. (2) An average unit storageof 116mm as the time of initial construction is decreased to 95.6mm at present. This phenomena cause a greater storage of irrigation water, sinceit was assumed that original storage quantity itself was already in short. (3) A sediment deposition rate as a relation to the capacity of unit drainge area is as follow: Qs=1.27(C/A)0.6 and standard deviation is 185.5㎥/$\textrm{km}^2$/year. (4) A sediment deposition rate as a relation to the mean of annual rainfall is as follow: Qs=21.9p10.5 and the standard deviation is 364.8㎥/$\textrm{km}^2$/year. (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow: Qs=39.6S0.75 and the standard deviation is 190.2㎥/$\textrm{km}^2$/year (6) Asediment deposition rate as a relation to the drainage area, mean of rainfall, mean of slope of drainage area is: Log Qs=0.197+0.108LogA-6.72LogP+2.20LogS and the standard deviation is 92.4㎥/$\textrm{km}^2$/year

  • PDF

Rootzone Profile, Trickle Irrigation System and Turfgrass Species for Roof Turf Garden (옥상녹화에 적합한 지반, 점적 관수 및 잔디 선정)

  • 이재필;한인송;주영규;윤원종;정종일;장진혁;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • This study was conducted to find out suitable rootzone profile, irrigation system, and turfgrass species for roof turf garden. Treatments of profile with soil amendment were Mixture I: Perlite(PL)60%+Vermiculite(VC)20%+Peatmoss(PM)20%, Mixture II: PL60%+VC 10%+PM20%+Sand(SD)10%, Mixture III: PL60%+VC20%+PM20% and Mixture IV: PL60%+VC10%+PM20%+SD10%+Styrofoam 5cm as a drain layer. To test trickle irrigation for roof garden, intervals of main pipe spacing(50cm, 100cm) and drop hole distance(15, 20, 30, 50 and 100cm)were treated, To select most suitable turfgrass species or mixture, Bermudagrass 'Konwoo', Zoysiagrass 'Konhee' and cool-season grass(Kentucky Bluegrass 80% + Perennial Ryegrass 20%, Tall Fescue 30% + KB50% + PR 20%)were tested. In particle size analysis, the soil amendments Perlite and vermiculite showed very even distribution, however, peatmoss contained mostly coarse particles with fiber over $\Phi$ 4.75mm. Under field moisture condition, vermiculite and peatmoss showed 350% water holding capacity, on the other hand, sand or Perlite showed 115% and 166%, respectively. Total weight of soil profile was 139.2kg/$m^2$ with Styrofoam drain layer without sand, which showed most lightest among treatments. Turf quality also resulted positve with Styrofoam drain layer installation. On trickle irrigation system, the proper interval of main drain pipe spacing and drop hole distance were 50cm and 50cm, respectively, In irrigation frequency, once per a day for 15 minute irrigation with 2 1/hr showed the best results on turf quality. Among turfgrass species or cool season grass mixture, warm season turfgrass fine leaf type zoysiagrass 'Konhee' and Bermudagrass 'Konwoo' showed very acceptable result on all over the treatments of rootzone and irrigation system. To apply cool season grasses for the roof garden, advanced researches may be needed to establish the proper soil amendment, rootzone profile, and irrigation system, Application of Bermudagrass 'Konwoo' for roof turf garden also needs successive tests to overcome winter injuries.

The Evaluation on the exiting greens of Hwasan Country Club by undisturbed Soil Core Analysis (토양 코아 분석을 통한 화산 골프장의 조성된 그린에 대한 평가)

  • 이상재;허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • The subsurface environment of the root zone area can set the stae for "do or die" of the turfgrass plant. The good condition of the greens is verified by their physical properties. Therefore, this study was carried to evaluate on the existing green of Hwasan C.C. by undisturbed soil Core Anaysis. We completed the ISTRC SYSTEM BenchMarking of the undisturbed core samples taken from Green #1, Green #5, Green #9-"Best" area, and Green #9-"Stressed" area for the Hwasan C.C.. It was also our understanding that the greens were in "good" to "very good" conditioni. THe exception might be Green #9-"Stress" area, which was the stressed area. The stressed area was confined to a ridge across Green #9. The organic content test results comfirmed the development of organic layering in depth 0-2.5cm. For the amount of compaction in the upper root zones and te development of the green's respective organic layers, the infiltration rates were high in Green #1, Green #5, and Green #9 "Stressed" area. The depicted aerificaton hole might be the probable cause of the relatively high infiltraton rate. Green #9-"Best" area had a tested infiltration rate of 18.75cm/hr. Either this area had not been aerified, or the undisturbed sample did not contain a aerification cavity. The water retention capacity of the undisturbed samples was good. When the greens were first constructed, the original root zone mix had been relatively low water retention properties. And the bulk density and the porosity of the undisturbed samples were good. In the result, all the greens were similar except for the infiltration. Thus, we supposed that Green #9-"Stressed" area might be ainly influenced by the amount of irrigation water and the configuration of the green's surface. There had been a reduction in the amount of irrigation water as the water retention capacity in the greens was promoted. Especially, it had gradually become more of a problem as the green had matured in Green #9-"Stressed" area. Because Green #9-"Stressed" area was a ridge area. The reduction in the amount of irrigation water might be the probable cause of the stress in Green #9-"Stressed" area. Our final observation related to the soil texture and the particle size distribution of the sand. Though and sand contant of all the tested greens were good, the gravel content of them exceeded ISTRC Guidelines. In particle size distribution of the sand, the very coarse and the coarse content of all the tested greens exceeded, but the rest was insufficient. The stability is a function of the material retained on the 0.25mm mesh screen. But, the content of all the tested greens was very insufficient. Though all the greens was serviceable, the coarse root zone sands, such as the sand in the tested greens, tended to be "unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.;unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.ines.

  • PDF

Influence of Deep Flooding on Rice Growth and Yield in Dry-seeded Paddy Field (벼 건답직파 재배시 심수관개가 생육과 수량에 미치는 영향)

  • 원종건;최충돈;이외현;김칠용;이상철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.166-172
    • /
    • 1997
  • This experiment was carried out to clarify the effect of the deep water irrigation on dry-seeded rice cultivation at the three different water managements-deep continuous flooding(DCF), water saving irrigation(WSI), ordinary irrigation(OI). The highest tillering numbers per $m^2$ of rice were 551, 466 and 455 in OI, WSI and DCF, respectively. The tillering number of rice plants were significantly reduced in DCF. Heading date was delayed and the total chlorophyll content in leaf after heading was higher in DCF than those in other irrigation methods. For the characteristics associated with lodging, the culm length in DCF was slightly elongated and the diameter of culm in DCF was thicker than that in WSI and OI. The breaking weight and bending moment in DCF also were higher than those in others. As the result, although the culm length in DCF was long, the lodging index was comparatively low. The panicle length in DCF was longer than in OI and WSI. The spikelet number per $m^2$ and 1,000-grain weight were the most in WSI, while panicle number, ripened grain ratio and grain weight were not significantly different. Longer panicle length and more spikelet number resulted in higher yielding capacity in DCF.

  • PDF

Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field (논물 담수심이 온난화 가스 배출에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Jong-Gu;Park, Chan-Won;Shin, Yong-Kwang;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.150-156
    • /
    • 2005
  • The increasing emission of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. This study was conducted to investigate greenhouse gas emission with irrigation water depth in paddy field. Area of each experiment plot is $70m^2$, Three treatments with three replications were carried out in this experiment, which was laid out as randomized complete block design. The treatments of irrigation water were maximum field water capacity and 4 and 8 cm depth. The application rate of fresh rice straw was $8,000kg\;ha^{-1}$ in combination with chemical fertilizers ($110kg\;N\;ha^{-1}$, $45kg\;P_2O_5\;ha^{-1}$ and $57kg\;K_2O\;ha^{-1}$). The $CH_4$ emission was highest at 32 days after rice transplanting with rice straw treatment. The $CH_4$ emission in the plot of maximum field water capacity was lower compared with 4 and 8 cm of irrigation depth. $CH_4$ and $N_2O$ emission under different water depth in the paddy field were 30 and $1.52kg\;ha^{-1}$ at 8 cm depth, 281 and $1.71kg\;ha^{-1}$ at 4 cm depth, and 219 and $2.01kg\;ha^{-1}$ at water saturated condition. The total emission of greenhouse gases equivalent to $CO_2$ emission with rice straw application were $6,939kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $6,431kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $5,222kg\;CO_2\;ha^{-1}$ at water saturated condition. The GWPs without rice straw application were $4,449kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $3,702kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $4,579kg\;CO_2\;ha^{-1}$ at water saturated condition.

Comparisons of Water Behavior and Moisture Content between Rockwools and Coir used in Soilless Culture (무토양재배용 암면과 코이어 배지의 수분 이동 및 함수율 특성 비교)

  • Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • To improve crop productivity with optimal water management in soilless culture, the information of physical characteristics of the root medium including water behavior should be required. The objectives of this study were to analyze the physical characteristics including hydraulic properties of the root media commercially used and to analyze the relationships between actual moisture content and measured one by FDR sensor. The weight of the medium was measured by load cell for calculating the actual moisture content. The accuracy of the moisture content measured by FDR sensor was obtained by comparing with the actual one. The water holding capacity of the coir was lower than those of the rockwool due to the features of large and rough particles of the coir. The moisture content measured by FDR sensor showed large difference from the actual moisture contents measured by loadcell, indicating that the calibration of FDR sensor is needed before starting measurement. The optimum range of moisture content for irrigation control was narrow in the coir than the rockwool due to the lower water holding capacity and rehydration capability of the coir. The results of this study can be useful in establishing adequate irrigation strategies in the soilless culture.

A Study on Development of Computer model for Evaluating the Effective Rainfall on Upland Soil (밭 토양에서의 유효강우량 산정을 위한 전산모델 개발에 관한 연구)

  • 고덕구;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.63-72
    • /
    • 1982
  • To maintain an optimum condition for the plant growth on upland soil, the irrigation planning after the natural rainfall should be given enormous considerations on the rainfall effectiveness. This study has been intended to develop the computer model for estimating the effec- tiveness of the rainfall. The computer model should also estimated the infiltration due to the rainfall and the soil moisture deficiency at the root zone of the plant. For this purpose, the experiments of infiltration using rainfall simulator and the observations of the change of soil moisture content before and after rainfall were carried out. Needed input data for the developed model include final infiltration capacity and field capacity of the soil, porosity of the top soil, root depth of the plant, rainfall intensity and duration, and the Horton's decay coefficient. Among the needed input data for the developed model, final infiltration capacity and Horton's decay coefficient were determined by the experiments of infiltration. And from the result of the experiments, it is found that there is a great correlation between initial infiltration capacity and initial moisture content. And it is also found that the infiltration due to rainfall can be estimated with the Horton's equation. The developed model was tested by the experimental data with two rainfall intensities. Tests were conducted on the different root depths at each rainfall. Observed and estimated effective rainfalls were found to have great correlation. The result of the experiments showed that the effectiveness of the rainfall were 100%, so the comparisons were conducted by the comsumption rates of infiltration at each depth. The developed model can be also used for estimating the deficiency of rainfall, if the rainfall is not sufficient to the needed soil moisture. But, test was not carried out.

  • PDF