• Title/Summary/Keyword: irrigated water

Search Result 286, Processing Time 0.028 seconds

A Study on the Variation of Soil Physical Properties on the water requirement, growth, and yield in the direct Sowing culture of rice (수도직파재배에서 토양의 물리성 변화가 용수량과 생육 수량에 미치는 영향에 관한 연구)

  • 김철수;김시원
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.81-90
    • /
    • 1977
  • The research is conducted to study the effect of the soil physical properties in the direct sowing culture on the water requirement, growth, and yield of rice with Early-Tongil at the experimental paddy field of the Sangju agri. and seri. junior college in Keyngbuk province from 6th May to 15th September in 1977. The experimental plots are designed with the four plots which are non-irrigated standard (plowing to 15cm), non-irrigated deep lowed (plowing to 25cm), irrigated standard (plowing to 15cm), and irrigated deep plowing plot (plowing to 25cm) and also each plot is repreated four times by the split plot design. The results obtained are summarized as follows: 1) The soil sample was ML to 10cm depth from ground surface and those from 10cm to 20cm depth and from 20cm to 30cm were CL. Each specific gravity was 2. 6, 2. 6 and 2. 7. 2) The weather during culturing period was the sane as the normal year of mean temperature. The precipitation was little and the distribution of it was disordered comparing to normal year but the heavy sunshine gave good effect on ripening. 3) Percolation loss was increased more at the non-irrigated plot than at the irrigated plot, and that of deep-plowed plot was increased more. 4) Grain yield per 10a. of non-irrigated deep plowed plot was 898kg, it was greated than others but there wa no significance. 5) A significant difference in the number of spikelets per panicle was found between nonirrigated plot and irrigated plot, and the number of spiklelets per panicle at the nonirrigated plot was more than that of the irrigated plot. But there was no significance in the other yield components-number of panicle, fertility abd ripening ratio-at the irrigated plot, ut weight of 100 grains was higher at non-irrigated plot. 6) Yield and growth at the deep plowed plot were higher than those of standard plowed plot.

  • PDF

Sand Culture Using Recirculated Aquaculture Water (양어사육수를 이용한 사경재배)

  • 김기덕;이병일;강용구;문보흠;홍상근;홍석우;배용수
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.1
    • /
    • pp.79-88
    • /
    • 1999
  • In order top investigate the growth of water dropwort grown by sandculture irrigated with recirculated tilapia aquaculture water, these experiments were carried out. Fish(tilapia) production and biofiltration provided by sand cultured water dropwort(Oenanthe stolonifera DC.) were linked in a closed system of recirculation water. Water dropwort was irrigated with water drawn from the tilapia tank and drainage from sand beds was returned to the fish tank. The temperature, pH and EC of tilapia culture water were stable. The growth of water dropwort grown by sandculture with aquaculture water was normal. Microbial activity of the biofilterbed irrigated by tilapia rearing water was higher than that of biofilterbed irrigated by tapwater. The feasibility of an integrated, recirculatory system for concurrent production of water dropwort and fish with no additional fertilization application was demonstrated.

  • PDF

Ethylene Production and Accumulation in Leaf Sheath and Its Relation to Tillering Suppression of Deep-Irrigated Rice Plants

  • Myung Eul-Jae;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.363-367
    • /
    • 2004
  • The deep irrigation of rice plants brings about some beneficial effects such as reduced tiller production which results in the formation of bigger panicles, prevention of chilling injury, reduced weed growth, etc. The present study was carried out to examine the involvement of ethylene in the suppression of tiller production due to deep water irrigation in rice (cv. Dongjinbyeo). The ethylene production was induced in leaf sheath within 24 hours after the deep water irrigation and has increased even until 30 days after the treatment, recording 4.5-fold increase as compared to the shallow-irrigated rice plants. In the deep water irrigated rice plants, ethylene was accumulated to a high concentration in the air space of submerged leaf sheath as the irrigated water deterred the diffusion of ethylene out of the leaf sheath and ethylene biosynthesis was accelerated by the deep irrigation as well. The ethylene concentration recorded 35-fold increase in the deep-irrigated rice plants for 35 days. The tiller production was reduced significantly by the deep irrigation with water, the tiller bud, especially tertiary tiller bud differentiation being suppressed by the deepwater irrigation treatment, whereas the rice plants deep-irrigated with solutions containing $10^{-5}$ M or $10^{-6}$ M silver thiosulfate (STS), an action inhibitor of ethylene, showed the same or even higher production of tillers than those irrigated shallowly with water. This implies that the ethylene is closely linked with the suppression of tiller production due to deep water irrigation. In conclusion, ethylene, which was induced by hypoxic stress and accumulated in the leaf sheath due to submergence, played a key role in suppressing the tiller production of the deepwater irrigated rice.

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.

TIME SERIES ANALYSIS OF SPOT NDVI FOR IDENTIFYING IRRIGATION ACTIVITIES AT RICE CULTIVATION AREA IN SUPHANBURI PROVINCE, THAILAND

  • Kamthonkiae Daroonwan;Kiyoshe Honda;Hugh Turral
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.3-6
    • /
    • 2005
  • In this paper, the real scenario of water situation (e.g. water management, water availability and flooding) in an irrigated rice cultivation area in Suphanburi Province, Central-West Thailand is discussed together with the NDVI time series data. The result shown is derived by our classifier named 'Peak Detector Algorithm (PDA)'. The method discriminated 5 classes in terms of irrigation activities and cropping intensities, namely, Non-irrigated, Poorly irrigated - 1 crop/year, Irrigated - 2 crops/year, Irrigated - 3 crops/year and Others (no cultivation happens in a year or other land covers). The overall accuracy of all classified results (1999-2001) is around $77\%$ against independent ground truth data (general activities or function of an area). In the classified results, spatial and temporal inconsistency appeared significantly in the Western and Southern areas of Suphanburi. The inconsistency resulted mainly by anomaly of rainfall pattern in 1999 and their temporal irrigation activity. The algorithm however, was proved that it could detect actual change of irrigation status in a year.

  • PDF

The Comparison of Water Budget and Nutrient Loading from Paddy Field According to the Irrigation Methods (관개방법에 따른 논에서의 수문 및 수질특성에 미치는 영향)

  • Jeon, Ji-Hong;Choi, Jin-Kyu;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.118-127
    • /
    • 2005
  • The comparison of water balance and nutrient loading from paddy field with different irrigation management were carried out during 1999 ${\sim}$ 2002 at two different sites; one is irrigated with groundwater and the other is irrigated with surface water. For the surface water irrigated paddy field, irrigation was performed continuously during growing season. Whereas, initial irrigation with groundwater was applied during initial growing season, and the ponded water depth was maintained by natural precipitation since initial irrigation. The runoff frequency of groundwater irrigated paddy field was less than that of surface water irrigated paddy field. The nutrient concentration of ponded water was high by fertilization at early cultural periods, so reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Amount of irrigation water to surface water irrigated paddy field was higher than to groundwater irrigated paddy field and evapotranspiration was similar because it is influenced by climate. Overall input in and output from paddy field irrigated with goundwater were less than that with surface water. This study indicate that efficient water management can reduce surface drainage outflow, save water, and protect water quality. It might be important BMPs for paddy field.

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

A Study on the Evaluation of the Average Yields of Rice Under Rainfed and Partially Irrigated Paddy. (천수답 및 수리불안전답에서외 평균수확량 추정에 관한 고찰 -수문학적 방법-)

  • Mr. I. Naor
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.4001-4008
    • /
    • 1975
  • The economic evaluation of the feasibility of expanding fully irrgated agriculture in the Ogseo project must consider preproject yields of rice under rainfed and partially irrigated paddy cultivation in order to assess incremental incomes from irrigation. Statistical data on yields available from official sources and field surveys conducted in the project area do not specify whether given unit yields refer to actually cropped or potentially cropped lands. This latter factor obviously affects any evaluation of marginal benefits to be derived from irrigation as the extent of rainfed areas actually cropped varies from year to year according to rain fall at the critical growth periods for low land rice. Although less dependent on direct rainfall, yields from partially irrigated lands are also highly affected by seasonal rainfalls. In this paper on attempt has been made to determine average yield under rainfed and partially irrigated conditions by relating yields to a available water. For rainfed paddy cultivation, the analysis discriminates between effects of rain deficiencies during transplanting and subsquent growth periods. For partially irrigated paddy cultivation, seasonal rainfalls have been considered, implying sufficient storage capacity for supplementary irrigation. The average yield of rainfed paddy has been calculated as 2.11 t/ha and that of partially irrigated paddy as 2.8 t/ha. Assuming even division between these two water supply patterns of areas not fully irrigated, a composite yield of 2.46 t/ha is oftained. This figure will be adopted as the basis for the on-going studies and project evaluation.

  • PDF

Estimation of Optimal and Minimal Water Requirement for Chinese Cabbage and Maize on Water Management using Weighable Lysimeters (중량식 라이시미터에서 물관리에 따른 배추, 옥수수의 적정 및 최소 물 필요량 산정)

  • Ok, Jung-hun;Han, Kyung-hwa;Hur, Seoung-oh;Hwang, Seon-Ah;Kim, Dong-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • In this study, we performed to evaluate the water balance during the cultivation of Chinese cabbage and maize according to the soil type and water management method using weighable lysimeters, and to estimate the crop water stress coefficient and minimal water requirement by considering crop productivity and water deficiency. In 2018, Chinese cabbage cultivation period was not irrigated due to frequent rainfall two weeks after planting, so there was no difference in irrigation amount between the non-irrigated and the irrigated and little difference in crop yield. Excluding the Chinese cabbage cultivation in 2018, in the cultivation of Chinese cabbage and maize, the crop yield of irrigated plots was higher than that of non-irrigated plots. The evapotranspiration of irrigated plots was also generally higher than non-irrigated plots. Crop yield and evapotranspiration are closely related, and transpiration is active as biomass increases. The crop water stress coefficients in the middle and the late stage were 0.8 and 0.8 for Chinese cabbage and 0.8 and 0.5 for maize, respectively. The minimal water requirements for Chinese cabbage and maize were 82.0% and 68.8%, respectively, compared to the optimal water requirements (239.4 mm for Chinese cabbage and 466.9 mm for maize). These results can be used as basic data for water management for crop cultivation by securing the minimum amount of irrigation in case of water deficiency.