• 제목/요약/키워드: irreversible inhibition

검색결과 54건 처리시간 0.024초

Inhibition of Recovery from Potentially Lethal Damage by Chemicals in Chinese Hamster Cells is Realized through the Production of Irreversible Damage

  • Kim Jin Kyu;Komarova Ludmila N.;Tkhabisimova Marianna D.;Petin Vladislav G.
    • 환경생물
    • /
    • 제23권4호
    • /
    • pp.390-397
    • /
    • 2005
  • The inhibition of cell recovery might be proceeded via either the damage of the mechanism of the recovery itself or via the formation of irreversible damage which could not be repaired at all. Both these processes may take place at the same time. Any of these possibilities would result in a decrease in both the rate and extent of cell recovery. To distinguish them, a quantitative approach describing the process of recovery as a decrease in the effective radiation dose was applied to experimental data on the recovery from potentially lethal damage in Chinese hamster cells exposed to X-rays alone or combined with various chemicals (pyruvate, novobiocin, lactate, nalidixic acid, 3-aminobenzamide). For these particular cases, it is concluded that the recovery process itself is not damaged and the inhibition of the recovery is entirely due to the enhanced yield of the irreversibly damaged cells.

마늘의 가공 조리방법에 따른 Lipoxygenase활성도 저해효과 -마늘 추출액이 Lipoxygenase 활성도 저해에 미치는 영향- (Inhibition of Lipoxygenase Activity by the Extract of Various Processed Garlic - Inhibitory Effect of Garlic Extracts on Soybean Lipoxygenase Activity -)

  • Kim, Mee-Ree;Mo, Eun-Kyung;Kim, Seong-Hee;Sok, Dai-Eun
    • 한국식품영양과학회지
    • /
    • 제22권3호
    • /
    • pp.280-285
    • /
    • 1993
  • 동물체내에서 천식, 염증, 혈소판 응고 등에 관련된 매개체를 생성시키는 효소인 lipoxygenase작용기 전과 유사한 대두 lipoxygenase (Type IV)를 사용하여 생마늘의 수용액, 에탄올, 클로로포름 추출분획에 의한 lipoxygenase 저해 정도를 측정하였다. 효소를 클로로포름 추출 분획과 10분 preincuba-tion시킨 후의 효소 저해 양상은 비가역적 저해(1$_{50}$값, 55mg/$m\ell$)이었으며, 수용액 추출 분획의 경우는 주로 가역적 저해 양상(1$_{50}$값, 65mg/$m\ell$)을 나타내었다. 한편, diallyldisulfide와 dimethyldisulfide의 1$_{50}$값은 각각 1.3mM, 18mM 이었으며 이들은 가역적, 비가역적 저해 현상을 모두 나타내었다. 합성품 alliin은 비교적 높은 농도(10mM농도에서 22%저해)에서 저해하였으며, alliin의 분해산물은 비가역적 저해 양상을 나타낸 반면에, S-ethylcysteine sulfoxide는 효소를 거의 저해하지 않았다. 따라서 다진 마늘 속에는 가역적 저해제가 주로 함유되어 있고, 소량(25~30%)의 비가역적 저해제가 함유되어 있는 것으로 사료되었다.사료되었다.

  • PDF

Characterization of Aspartate Aminotransferase Isoenzymes from Leaves of Lupinus albus L. cv Estoril

  • Martins, Maria Luisa Louro;De Freitas Barbosa, Miguel Pedro;De Varennes E Mendonca, Amarilis Paula Alberti
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.220-227
    • /
    • 2002
  • Two aspartate aminoransferase (EC 2.6.1.1) isoenzymes (AAT-1 and AAT-2) from Lupinus albus L. cv Estoril were separated, purified, and characterized. The molecular weight, pI value, optimum pH, optimum temperature, and thermodynamic parameters for thermal inactivation of both isoenzymes were obtained. Studies of the kinetic mechanism, and the kinetics of product inhibition and high substrate concentration inhibition, were performed. The effect of some divalent ions and irreversible inhibitors on both AAT isoenzymes was also studied. Native PAGE showed a higher molecular weight for AAT-2 compared with AAT-1. AAT-1 appears to be more anionic than AAT-2, which was suggested by the anion exchange chromatography. SDS-PAGE showed a similar sub-unit molecular weight for both isoenzymes. The optimum pH (between 8,0 and 9.0) and temperature ($60-65^{\circ}C$) were similar for both isoenzymes. In the temperature range of $45-65^{\circ}C$, AAT-2 has higher thermostability than AAT-1. Both isoenzymes showed a high affinity for keto-acid substrates, as well as a higher affinity to aspartate than glutamate. Manganese ions induced an increase in both AAT isoenzymes activities, but no cooperative effect was detected. Among the inhibitors tested, hydroxylamine affected both isoenzymes activity by an irreversible inhibition mechanism.

생약으로 산화적 결합 효소인 갑상선 peroxidase의 저해제 검색 (Screening of Inhibitor of Thyroid Peroxidase, an Oxidative Coupling Enzyme from Natural Products)

  • 이현정;장미영;김미리;배기환;석대은
    • 약학회지
    • /
    • 제43권3호
    • /
    • pp.334-341
    • /
    • 1999
  • Thyroid peroxidase is a biochemical target protein for the antithyroid drugs. Ethanol extracts from one hundred and thirty seven natural products were screened for the inhibition of thyroid peroxidase activity. Thyroid peroxidase was purified from porcine thyroids, and the inhibition of peroxidase activity was evaluated using guaiacol oxidation (C-C coupling) assay. Twenty one natural products expressed a remarkable inhibition (>50%) of peroxidase activity at $330{\mu\textrm{g}}$ solid weight/m. The 50% inhibitory concentration ($IC_{50}$) of 70% ethanol extract from six potent natural products ranged from 3.1 to $31.2{\;}{\mu\textrm{g}}$ solid weight/m, in contrast to the range ($0.33~0.54{\;}{\mu\textrm{g}}/ml$) of $IC_{50}$ values fro catechin and epigallocatechin gallate as positive controls. Noteworthy, the extract of Camellia taliensis showed irreversible inhibition of the enzyme. It is suggested that extract from some natural products such as Camellia taliensis, Rheum undulatum or Euphorbia perinensis, exhibiting a potent inhibition of peroxidase activity, may be developed as sources of potent antithyroid agents.

  • PDF

$N^1$-Alkylnicotinamide Chloride 유도체에 의한 탈수소 효소의 불활성화에 관한 연구 (Inactivation Study of Pyridine-Linked Dehydrogenases by $N^1$-Alkylnicotinamide Chlorides)

  • 김수자;이현재
    • 대한화학회지
    • /
    • 제20권5호
    • /
    • pp.406-416
    • /
    • 1976
  • Pyridine관여 탈수소 효소는 $N^1$-alkylnicotinamide chloride 유도체에 의하여 저해 작용을 받고 있는 바 저해제이 농도 변화에 따른 효소 저해작용이 가역 또는 비가역 불활성화 반응에 기인하는지의 여부를 밝혀 보기 위하여 토끼 근육으로 부터 유리한 L-${\alpha}$-glycerophosphate dehydrogenase를 사용하여 연구하였다. 이 효소의 저해작용은 상용한 저해제 유도체의 농도가 희박했을 경우 가역적인 효소저해 반응을 보여주고 있으나 저해제의 농도가 증가함에 따라 점차 비가역적인 효소 불활성화로서 나타남을 알았으며 이러한 비가역 불활성화 반응은 저해제의 농도가 증가함에 따라 형성될 수 있는 micelle 구조의 미세분자와의 결합에 의한 효소의 변성에 기인할 것이라고 결론을 얻었다.

  • PDF

Chemical Inhibition of Cell Recovery after Irradiation with Sparsely and Densely Ionizing Radiation

  • Evstratova, Ekaterina S.;Kim, Jin-Hong;Lim, Young-Khi;Kim, Jin Kyu;Petin, Vladislav G.
    • 방사선산업학회지
    • /
    • 제10권4호
    • /
    • pp.199-204
    • /
    • 2016
  • The dependence of cell survival on exposure dose and the duration of the liquid-holding recovery (LHR) was obtained for diploid yeast cells irradiated with ionizing radiation of different linear energy transfer (LET) and recovering from radiation damage without and with various concentrations of cisplatin - the most widely used anticancer drug. The ability of yeast cells to recover from radiation damage was less effective after cell exposure to high-LET radiation, when cells were irradiated without drug. The increase in cisplatin concentration resulted in the disappearance of this difference whereas the fraction of irreversible damage was permanently enlarged independently of radiation quality. The probability of cell recovery was shown to be constant for various conditions of irradiation and recovery. A new mechanism of cisplatin action was suggested according with which the inhibition of cell recovery after exposure to ionizing radiations was completely explained by the production of irreversible damage.

가수분해형 탄닌 1-desgalloylrugosin-F에 의한 100 kDa 세포질 포스포리파아제 $A_2$ 활성의 억제효과 (Inhibition of 100 kDa Cytosolic Phospholipase $A_2$ by Hydrolysable Tannin, 1-desgalloylrugosin-F)

  • 진미령;신혜숙;정광묵;강미선;이민원;김대경
    • 약학회지
    • /
    • 제44권1호
    • /
    • pp.47-51
    • /
    • 2000
  • To examine whether DGRF inhibits $cPLA_2$ activity in vitro, we purified a 100 kDa $cPLA_2$enzyme from porcine spleen and performed an inhibition study at two concentrations of 5.0 and 50.0 $\mu$M 1-stearoyl-2-[1-$^{l4C}$ ]arachidonoyl-sn -glycero-3-phosphocholine as a substrate to rule out an apparent inhibition due to "substrate depletion". Here we reported that DGRF inhibited $cPLA_2$activity with $ID_{50}$ of 3.2 $\mu$M and virtually complete inactivation of the enzyme occurred at 60 $\mu$M. Interaction experiment between enzyme protein and inhibitor by ultrafiltration method indicated that 1-desgalloylrugosin-F inactivates $cPLA_2$enzyme by an irreversible mechanism.

  • PDF

Studies on the Mechanism of Action of the Gastric $H^{+}$+$K^{+}$ ATPase Inhibitor KH 3218

  • Cheon, Hyae-Cyeong;Kim, Hyo-Jung;Yum, Eul-Kgun;Cho, Sung-Yun;Kim, Do-Yeob;Yang, Sung-Il
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.205-209
    • /
    • 1995
  • The novel compound KH 3218 was synthesized and evaluated for its ability to inhibit the gastric H$^{+}$$K^{+}$ ATPase activity in vitro as well as to lessen gastric acid secretion in vivo. KH 3218 inhibited rabbit gastric H$^{+}$$K^{+}$ ATPase in a concentration and time dependent manner. $IC_{50}$/ value was estimated to be about 15 $\mu$M. The inhibition of the H$^{+}$$K^{+}$ ATPase by KH 3218 was blocked by sulfhydryl reducing agents, dithiothreitol or $\beta$-mercaptoethanol. The inhibition of the enzyme was not reversible by 50 fold dilution of the incubation mixtures, suggesting the irreversible nature of the inactivation. In the pylorus-ligated rift, KH 3218 reduced the total acid output as compared with the control. In addition, KH 3218 was capable of inhibiting H. pylori urease activity. These data suggest that KH 3218 is a potent inhibitor for H$^{+}$$K^{+}$ ATPase activity as well as for gastric acid secretion, and has a potential to be developed as a novel antiulcer agent.

  • PDF

Comparative study on response of thiocyanate shock load on continuous and fed batch anaerobic-anoxic-aerobic sequential moving bed reactors

  • Sahariah, B.P.;Chakraborty, S.
    • Environmental Engineering Research
    • /
    • 제20권1호
    • /
    • pp.65-72
    • /
    • 2015
  • A comparative study on response of a toxic compound thiocyanate ($SCN^-$) was carried out in continuous and fed batch moving bed reactor systems. Both systems had three sequential anaerobic, anoxic and aerobic reactors and operated at same hydraulic retention time. Feed $SCN^-$ was first increased from 600 mg/L to 1,000 mg/L for 3 days (shock 1) and then from 600 to 1,200 mg/L for 3 days (shock 2). In anaerobic continuous reactor, increase of effluent COD (chemical oxygen demand) due to shock load was only 2%, whereas in fed batch reactor it was 14%. In anoxic fed batch reactor recovery was partial in terms of $SCN^-$, phenol, COD and $NO{_3}{^-}$-N and $NO{_2}{^-}$-N removals and in continuous reactor complete recovery was possible. In both systems, inhibition was more significant on aerobic reactors than anaerobic and anoxic reactors. In aerobic reactors ammonia removal efficiency deteriorated and damage was irreversible. Present study showed that fed batch reactors showed higher substrate removal efficiency than continuous reactors during regular operation, but are more susceptible to toxic feed shock load and in nitrifying reactor damage was irreversible.

Inhibition of Dicarboxylate Transport by p-chloromercuribenzoic Acid (PCMB) in Plasma Membrane Vesicles of Rabbit Proximal Tubule

  • Kim, Yong-Keun;Kim, Tae-In;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.179-188
    • /
    • 1991
  • Effect of a sulfhydryl reagent, p-chloromercuribenzoic acid (PCMB), on the transport of succinate was studied in brush border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit renal cortex. PCMB induced an irreversible inhibition of the $Na^+-dependent$ succinate uptake in a dose-dependent manner with $IC_{50}$ of 55 and $65\;{\mu}M$ in BBMV and BLMV, respectively. The inhibitory effect of PCMB was prevented by a pretreatment of vesicles with dithiothreitol. PCMB did not increase $Na^+$ permeability at concentrations inhibiting succinate uptake. The PCMB inhibition of succinate uptake was due to a change in Vmax, but not in Km. When membrane vesicles were pretreated with PCMB in the presence of unlabelled succinate, the inhibitory effect was significantly reduced. In both BBMV and BLMV, succinate uptake was inhibited by various sulfhydryl reagents with the inhibitory potency of following order: $HgCl_2$>DTNB>PCMBS>PCMB. These results suggest that sulfhydryl groups are essential for dicarboxylate transport and that they may be located at or near substrate binding sites of the transporters in renal brush border and basolateral membranes.

  • PDF