• Title/Summary/Keyword: irregular setback structures

Search Result 6, Processing Time 0.02 seconds

A Seismic Behavior of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 지진 거동)

  • 문성권
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2000
  • Seismic behavior of 3-dimensional setback structures showing abrupt reductions of the floor size within the structure height and the effect of in-plane deformations of floor slabs on the seismic behavior of those structures are investigated. To find out general seismic behavior of 3-dimensional setback structures two parameters, level of setback(L/sub s/) and degree of setback(R/sub s/) are used. Analysis results obtained from forty eight setback structures show that a sudden change in story shear near setback level is occurred for irregular setback structures. The effect of in-plane deformation of floor slabs on the seismic behavior of setback structures is greatly influenced by the arrangement of lateral load resisting elements and it is more pronounced for frame-shear wall system showing large difference in stiffness among the lateral load resisting elements. The in-plane deformation of floor slabs results in reduced base shear, especially for FW-type structures with L/sub s/=1.0. Also, it brings about reduced story shear for the lateral load resisting element with shear wall and increase in story shear lot the lateral load resisting element without shear wall. The in-plane deformation of floor slabs at the base portion and/or tower portion due to difference in stiffness among the lateral load resisting elements brings about increment of floor displacements at all floor level.

  • PDF

Seismic Performance of High-rise Moment-resisting RC Frame Structures with Vertical Setback

  • Jiang, Huanjun;Huang, Youlu;Li, Wannian
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.307-314
    • /
    • 2020
  • High-rise buildings with vertical setback are widely used in practice. From the field investigation of the past earthquakes, it was found that such kind of vertically irregular high-rise building structures easily suffer severe damage during strong earthquakes. This paper presents an extensive study on the earthquake responses of moment-resisting frame structures (MFS) popularly applied in high-rise buildings with vertical setback. Four groups of MFS are designed, including three groups of structures with vertical setback and one group of structures with the lateral stiffness varying along the building height but without vertical setback. The numerical models of the structures are established, and the time history analysis of the structures under different levels of earthquakes is conducted. The earthquake responses of the structures are compared. The influence of the ratio between the horizontal setback dimension and the previous plan dimension, the eccentricity of setback, and the position where the setback occurs on the seismic performance of structures is studied. The rationality of the provisions for the structures with vertical setback specified in the current design codes is checked by the findings from this study.

Dynamic Characteristics of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 동적 특성)

  • 문성권
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.287-294
    • /
    • 1998
  • 입면의 형태가 임의의 층에서 큰 차이를 보이는 3차원 비정형 setback 구조물의 동적 거동 특성과 이들 구조물의 동적 거동에 미치는 바닥 슬래브의 면내 변형 효과를 분석하였다. 비정형 setback 구조물의 전반적인 동적 거동특성을 분석하기 위하여 베이스 부분의 평면적과 타워 부분의 평면적 비(R?), setback 발생위치(L?)등을 매개 변수로 사용하였다. 48개의 비정형 setback 구조물들에 대한 해석 수행 결과 setback 구조물은 정형 구조물에 비해 횡방향 1차 모드의 유효 모드 중량(effective modal weight)이 작게 나타나는 경향을 보이기 때문에 setback 구조물의 동적 거동을 파악하기 위해서는 등가 정적 해석법 대신에 동적 해석을 수행할 필요가 있음을 알 수 있었다. 바닥슬래브의 면내 변형은 보다 긴 구조물의 고유 진동 주기값을 가져오며 모드 순서 및 모드 형상에도 변화를 준다. 이러한 사실은 바닥슬래브의 면내 변형으로 인하여 횡방향 저항 요소들간의 전단력 분포와 층 변위가 영향을 받을 수 있다는 것을 의미한다. 이러한 현상은 횡방향 저항 요소들간의 강성 차가 심한 프레임-전단벽 시스템에서 두드러지게 나타난다.

  • PDF

Seismic vulnerability assessment of low-rise irregular reinforced concrete structures using cumulative damage index

  • Shojaei, Fahimeh;Behnam, Behrouz
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.407-422
    • /
    • 2017
  • Evaluating seismic performance of urban structures for future earthquakes is one of the key prerequisites of rehabilitation programs. Irregular structures, as a specific case, are more susceptible to sustain earthquake damage than regular structures. The study here is to identify damage states of vertically irregular structures using the well-recognized Park-Ang damage index. For doing this, a regular 3-story reinforced concrete (RC) structure is first designed based on ACI-318 code, and a peak ground acceleration (PGA) of 0.3 g. Some known vertical irregularities such as setback, short column and soft story are then applied to the regular structure. All the four structures are subjected to seven different earthquakes accelerations and different amplitudes which are then analyzed using nonlinear dynamic procedure. The damage indices of the structures are then accounted for using the pointed out damage index. The results show that the structure with soft story irregularity sustains more damage in all the earthquake records than the other structures. The least damage belongs the regular structure showing that different earthquake with different accelerations and amplitudes have no significant effect on the regular structures.

Equivalent lateral force method for buildings with setback: adequacy in elastic range

  • Roy, Rana;Mahato, Somen
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.685-710
    • /
    • 2013
  • Static torsional provisions employing equivalent lateral force method (ELF) require that the earthquake-induced lateral force at each story be applied at a distance equal to design eccentricity ($e_d$) from a reference resistance centre of the corresponding story. Such code torsional provisions, albeit not explicitly stated, are generally believed to be applicable to the regularly asymmetric buildings. Examined herein is the applicability of such code-torsional provisions to buildings with set-back using rigid as well as flexible diaphragm model. Response of a number of set-back systems computed through ELF with static torsional provisions is compared to that by response spectrum based procedure. Influence of infill wall with a range of opening is also investigated. Results of comprehensive parametric studies suggest that the ELF may, with rational engineering judgment, be used for practical purposes taking some care of the surroundings of the setback for stiff systems in particular.

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.