• Title/Summary/Keyword: irradiated fuel

Search Result 156, Processing Time 0.024 seconds

Robotic Floor Surface Decontamination System

  • Kim, Kiho;Park, Jangjin;Myungseung Yang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.133-134
    • /
    • 2004
  • DUPIC (Direct Use of spent PWR fuel In CANDU) fuel cycle technology is being developed at Korea Atomic Energy Research Institute (KAERI). All the DUPIC fuel fabrication processes are remotely conducted in the completely shielded M6 hot-cell located in the Irradiated Material Examination Facility (IMEF) at KAERI. Undesirable products such as spent nuclear fuel powder debris and contaminated wastes are inevitably created during the DUPIC nuclear fuel fabrication processes.(omitted)

  • PDF

ON THE DEVELOPMENT OF A DISTILLATION PROCESS FOR THE ELECTROMETALLURGICAL TREATMENT OF IRRADIATED SPENT NUCLEAR FUEL

  • Westphal, Brian R.;Marsden, Kenneth C.;Price, John C.;Laug, David V.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.163-174
    • /
    • 2008
  • As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed.

Determination of Plutonium in HANARO Irradiated Fuel by IDMS (동위원소희석 질량분석법에 의한 조사 후 하나로 핵연료 중 Pu 정량)

  • Jeon, Young Shin;Son, Sae Chul;Kim, Jung Suk
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.191-197
    • /
    • 2003
  • Two methods, IDMS (Isotope Dilution Mass Spectrometry) and controlled potential coulometry are compared by the determination of Pu for the NBL, CRM No.122, $PuO_2$. The recovery of Pu was found to be $1.002176{\pm}0.000452$ within the relative standard deviation of 0.045% (95% conf. level) although a small size of sample ($0.9{\mu}g$-Pu) was used in IDMS. The recovery using controlled potential coulometry were obtained in the range of 0.9923~0.9960. The analytical results of IDMS and controlled potential coulometry were good agreement within 0.6~1%. Base on these experiment results, The plutonium in HANARO irradiated fuel rod that separated portion of top, middle, and bottom were determined. The measured values of Pu are 1.155 mg, 2.483 mg and 1.920 mg in one gram of sample(fuel+clad), respectively.

Effects of Zr-hydride distribution of irradiated Zircaloy-2 cladding in RIA-simulating pellet-clad mechanical interaction testing

  • Magnusson, Per;Alvarez-Holston, Anna-Maria;Ammon, Katja;Ledergerber, Guido;Nilsson, Marcus;Schrire, David;Nissen, Klaus;Wright, Jonathan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • A series of simulated reactivity-initiated accident (RIA) tests on irradiated fully recrystallized boiling water reactor Zircaloy-2 cladding has been performed by means of the expansion-due-to-compression (EDC) test method. The EDC method reproduces fuel pellet-clad mechanical interaction (PCMI) conditions for the cladding during RIA transients with respect to temperature and loading rates by out-of-pile mechanical testing. The tested materials had a large variation in burnup and hydrogen content (up to 907 wppm). The results of the EDC tests showed variation in the PCMI resistance of claddings with similar burnup and hydrogen content, making it difficult to clearly identify ductile-to-brittle transition temperatures. The EDC-tested samples of the present and previous work were investigated by light optical and scanning electron microscopy to study the influence of factors such as azimuthal variation of the Zr-hydrides and the presence of hydride rims and radially oriented hydrides. Two main characteristics were identified in samples with low ductility with respect to hydrogen content and test temperature: hydride rims and radial hydrides at the cladding outer surface. Crack propagation and failure modes were also studied, showing two general modes of crack propagation depending on distribution and amount of radially oriented hydrides. It was concluded that the PCMI resistance of irradiated cladding under normal conditions with homogenously distributed circumferential hydrides is high, with good margin to the RIA failure limits. To further improve safety, focus should be on conditions causing nonfavorable hydride distribution, such as hydride reorientation and formation of hydride blisters at the cladding outer surface.

Development of integrated waste management options for irradiated graphite

  • Wareing, Alan;Abrahamsen-Mills, Liam;Fowler, Linda;Grave, Michael;Jarvis, Richard;Metcalfe, Martin;Norris, Simon;Banford, Anthony William
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1010-1018
    • /
    • 2017
  • The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

The Option Study of Oversea Shipment of DUPIC Fuel Elements to Canada (고방사성 산화물핵연료의 해외수송방안 분석)

  • 이호희;박장진;양명승;서기석
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.614-620
    • /
    • 2003
  • KAERI has developed DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF To verify the performance of DUPIC nuclear fuel, irradiation test at the operating conditions of commercial power plant is essential. Since the HANARO research reactor of KAERI does not have fuel test loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6kg). This transportation package is classified as the 7-th class according to "recommendation on the transport of dangerous goods" made by the United Nations. In case of air shipment, until now, there is no proper air transportation cask for DUPIC fuel. In case of sea transportation is possible but requires very high cost.high cost.

  • PDF

Dimensional Measurement of Spent Fuel Assemblies Using Image Processing Technique (영상처리기술에 의한 사용후핵연료 집합체의 제원 측정)

  • Koo, Dae-Seo;Park, Seong-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • A pool image processing measurement method has been developed to improve the examination efficiency and to minimize the errors of dimensional measurements of spent fuel assemblies in pool. Diameter and length measurements of mock-up fuel rods using the image processing system are $-0.24{\pm}0.03mm,\;0.34{\pm}0.06mm$ on the basis of the true value and their maximum errors are within -0.3 and 0.4mm, respectively, According to the result of dimensional measurement of spent fuels in pool, the upper and lower part diameter and mid part diameter of fuel rods of the J44 fuel assembly irradiated for 2 cycles in the Kori-2 nuclear reactor were decreased by about 2.0 and 3.0% in comparison with design values, respectively. The length of fuel rods was elongated by about 0.4%. The change behavior of diameter and length. of fuel rods of the F02 fuel assembly irradiated for 3 cycles in the Kori-1 nuclear reactor showed a trend similar to the results of J44.

CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

  • Park, Jong-Youl;Shim, Moon-Soo;Lee, Jong-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.875-882
    • /
    • 2014
  • In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU) reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.