• Title/Summary/Keyword: irradiated diamond

Search Result 17, Processing Time 0.03 seconds

Application of FTIR on the study of Natural, Synthetic and Irradiated Diamonds (FTIR을 이용한 천연, 합성, 방사선 처리된 다이아몬드의 분광학적 특성 연구)

  • Kim, Jong-Rang;Shon, Shoo-Hack;Kim, Su-Hun;Lim, Ye-Won;Kim, Jong-Gun;Kim, Jeong-Jin;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2007
  • FTIR technique was applied to delineate spectroscopic characteristics of natural, synthetic and irradiated diamonds. All of the samples studied in this work show the absorption peaks, which are generally observed in diamond as well as the specific one related to N in diamonds. Synthetic diamond is characterized with both the peaks of 1344 and $1128 cm^{-1}$ related to HPHT synthesis and specific $1050 cm^{-1}$ peak only observed in synthetic diamond, which can be used to discriminate natural from synthetic. Type (natural blue diamond: IIb, electron beam Irradiated blue diamond: Type Ia) can be used to discriminate natural from irradiated diamond. The intensity of specific $1450 cm^{-1}$ peak observed only in irradiated diamond is related with irradiation and annealing process.

Study on the Spectroscopic Characteristics of Irradiated Diamonds (전자빔 처리된 다이아몬드의 분광학적 특성 연구)

  • Shon, Shoo-Hack;Kim, Bea-Seoub;Jang, Yun-Deuk;Kim, Jong-Rang;Kim, Jong-Gun;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.407-415
    • /
    • 2009
  • The change of the nitrogen-related centers and the color change of electron beam irradiated type Ia natural diamonds were studied. The irradiation of diamond with high-energy electron beam creates lattice defects which are neutral single vacancy $V^0$. It increased with increasing electron dose density. The B aggregation seems to produce vacancies more easily than the A aggregation, because diamonds with more B aggregation have more platelets, which are sufficient breakable size by electron beam. Greenish blue color of irradiated diamond is changed to darker with increasing electron dose density. GR1 centers with a zero-phonon line at 741 nm and phonon sidebands make transmit visible light at 530 nm and it moves to 500 nm with higher intensity of GR1 centers.

Effect of Hydrogen Radicals for Ion Implanted CVD Diamond Using Remote Hydrogen Plasma Treatment(RHPT)

  • Won, Jaihyung;Hatta, Akimitsu;Yagi, Hiromasa;Wang, Chunlei;Jiang, Nan;Jeon, Hyeongmin;Deguehi, Masahiro;Kitabatake, Makoto;Ito, Toshimichi;Sasaki, Takatomo;Hiraki, Akio
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.15-19
    • /
    • 1998
  • Defects formation of Chemical Vapor Deposition (CVD) diamond on $^4He^{2+}$ irradiation and after remote hydrogen plasma treatment(RHPT) were investigated by cathodoluminescence(CL). As calculated in the TRIM simulation, the light elements of $^4He^{2-}$ can be penetrated into the diamond bulk structure at 3~4 $\mu\textrm{m}$ depth. The effects of the implantation region were observed when 5 keV~20 keV electron energy (insight 0.3~4.0$\mu\textrm{m}$) of CL measurement was irradiated to diamond at temperature 80 K. After the RHPT, rehybridization of irradiation damaged diamond was studied. The intensity of 5RL center(intrinsic defect of C) was diminished. The 2.16 eV center (N-V center) occurring usually by annealing could not be seen after RHPT. The diamond was rehybridized by hydrogen radicals without etching and thermal degradation by the RHPT.

  • PDF

Structural Modification of Nanodiamond Induced by Ion Irradiation

  • Seok, Jae-Gwon;Im, Won-Cheol;Chae, Geun-Hwa;Song, Jong-Han;Lee, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.195.2-195.2
    • /
    • 2014
  • Nanodiamond (ND) is composed of inner diamond core and outer graphite shell. The size of ND used in this study was about 5 nm. The ND solution was dropped on silicon substrate and dried in air. Dried ND sample was purified by using annealing method in air. Then, 40 keV Fe ion was irradiated into the sample. The dose was varied from $1{\times}10^{14}$ to $1{\times}10^{16}ions/cm^2$. The post annealing was performed at 1073 K in the vacuum to recover diamond structure. The annealing at 873 K in air was performed to remove the outer graphite shell. The structure of ND was confirmed by X-ray diffraction (XRD) and Raman spectroscopy. We will present the detailed data and results in the conference.

  • PDF

Wavelength-resolved Thermoluminescence of Chemical-vapor-deposited Diamond Thin Film (화학증착된 다이어몬드 박막의 파장 분해된 열자극발광)

  • Cho, Jung-Gil;Yi, Byong-Yong;Kim, Tae-Kyu
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Diamond thin films were synthesized by a chemical vapor deposition (CVD). Raman spectrum showed the diamond line at 1332 $cm^{-1}$ / and x-ray diffraction pattern exhibited a strong (111) peak of diamond. The scanning electron microscopy analysis showed that the CVD diamond thin film was grown to be unepitaxial crystallites with pyramidal hillocks. A wavelength-resolved thermoluminescence (TL) of the CVD diamond thin film irradiated with X-rays showed one peak at 430 nm around 560 K. The glow curve of the CVD diamond thin film produced one dominant 560-K peak that was caused by first-order kinetics. Its activation energy and the escape frequency were calculated to be 0.92 ~ 1.05 eV and 1.34 $\times$ 10$^{7}$ sec$^{-1}$ , respectively. The emission spectrum at 560 K was split into 1.63-eV, 2.60-eV, and 3.07-eV emission bands which is known to be attribute to silicon-vacancy center, A center, and H3 center, respectively.

  • PDF

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF

THE SEM STUDY ABOUT THE MORPHOLOGICAL CHANGES OF THE DENTINAL SURFACE IRRADIATED WITH Nd : YAG LASER (Nd : YAG 레이저를 조사한 상아질 표면변화에 관한 주사전자현미경적 연구)

  • Lim, Sung-Sam;Yoon, Soo-Han;Park, Dong-Sung
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.479-489
    • /
    • 1997
  • The purpose of this study was to evaluate the effect of the Nd : YAG laser on the tooth hypersensitivity by the observation of the morphological changes of the dentinal surface irradiated with Nd : YAG laser by use of SEM. In 40 mandibular and maxillary molars without any carious lesion or restoration, severe attrition and abrasion, Enamel was removed with fine grit diamond bur and exposed dentinal surfaces were polished with Soflex discs. In control group (10 teeth), exposed dentinal surfaces were acid-etched with 10 % Maleic acid for 15 seconds. In the experimental group 1 (10 teeth), acid-etched dentinal surfaces with 10% Maleic acid were prepared by Nd : YAG laser (6 watts power, 1 psi water, 18 psi air) for 2 minutes. In the experimental group 2 (10 teeth), exposed dentinal surfaces were irradiated with Nd: YAG laser (10 watts power, 3 psi water, 10 psi air) until the painted black stains on the dentinal surfaces were completely removed. In the experimental group 3 (10 teeth). dentinal surfaces were prepared with Nd : YAG laser (6 watts power, 1 psi water, 18 psi air) until the painted black stanins on them were completely removed and then the irradiated dentinal surfaces were acid-etched with 10 % Maleic acid for 15 seconds. The specimens were routinely processed and observed with scanning electron microscope. The results were as follows : 1. In the irradiated dentinal surfaces, the characteristics of the melting and recrystalization on the dentinal surfaces were observed. Compared with the results in the control group, we could observe that in the irradiated dentinal surfaces, the aperture of the dentinal tubules were reduced and there were more debris obstructing the dentinal tubules. 2. In the irradiated dentinal surfaces, crater structures were commonly present and in the crater bottoms, there were a lot of bead like melted dentin structures, which had the ruptured opening in the center of them. 3. The melted dentins and cracks in the smear layer were less frequently observed in the irradiated dentinal surfaces using copious cooling water than in the irradiated dentinal surfaces using scare cooling water.

  • PDF

Multidirectional Liquid Crystal Orientation by Using Ion Beam Irradiation

  • Ahn, Han-Jin;Kim, Kyung-Chan;Kim, Jong-Bok;Hwang, Byung-Har;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.543-546
    • /
    • 2005
  • We have investigated the alignment ability of multi-domains by using ion beam irradiation on diamond-like carbon (DLC) thin film layers. The DLC thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) system and the low energy ion beam is irradiated from Kaufman type ion gun. The direction of liquid crystal alignment is varied by the direction of Ar ion beam irradiation.

  • PDF

Alignment property change in DLC alignment layer containing various hydrogen concentration

  • Kim, Jong-Bok;Kim, Kyung-Chan;Ahn, Han-Jin;Hwang, Byung-Har;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.378-380
    • /
    • 2005
  • Diamond like carbon (DLC) films are known that they show homogeneous alignment property when they are irradiated by Ar ion beam. The DLC films in most of studies were deposited by CVD and contain large mount of hydrogen. In order to identity the hydrogen effect on alignment property, DLC films is deposited by RF magnetron sputter using various ratio of Ar and H2 as reactive gas. DLC films are characterized by FT-IR, Raman and contact angle. Alignment property is estimated by measuring pretilt angle.

  • PDF

Investigation on Liquid Crystal Alignment Effects of SiNx Thin Film Irradiated by Ion Beam (이온 빔 조사된 SiNx 박막의 액정 배향 효과에 관한 연구)

  • Lee, Sang-Keuk;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jin-Woo;Kang, Dong-Hun;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.398-398
    • /
    • 2007
  • Most recently, the Liquid Crystal (LC) aligning capabilities achieved by ion beam exposure on the diamond-like carbon (DLC) thin film layer have been successfully studied. The DLC thin films have a high mechanical hardness, a high electrical resistance, optical transparency and chemical inertness. Nitrogen doped Diamond Like Carbon (NDLC) thin films exhibit properties similar to those of the DLC films and better thermal stability than the DLC films because C:N bonding in the NDLC film is stronger against thermal stress than C:H bonding in the DLC thin films. Moreover, our research group has already studied ion beam alignment method using the NDLC thin films. The nematic liquid crystal (NLC) alignment effects treated on the SiNx thin film layers using ion beam irradiation for three kinds of N rations was successfully studied for the first time. The SiNx thin film was deposited by plasma-enhanced chemical vapor deposition (PECVD) and used three kinds of N rations. In order to characterize the films, the atomic force microscopy (AFM) image was observed. The good LC aligning capabilities treated on the SiNx thin film with ion beam exposure for all N rations can be achieved. The low pretilt angles for a NLC treated on the SiNx thin film with ion beam irradiation were measure.

  • PDF