• Title/Summary/Keyword: iron salts

Search Result 61, Processing Time 0.025 seconds

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Clinical Study on the Iron Absorption from Heme-Iron Polypeptide and Nonheme-Iron

  • Nam, Tae-Sik;Shim, Ji-Yeon;Kim, Byung-Ju;Rah, So-Young;Park, Kwang-Hyun;Kim, Seon-Young;Mun, Eun-Gyeng;Jeong, Young-Ju;Han, Myung-Kwan;Cha, Youn-Soo;Chae, Soo-Wan;Im, Mie-Jae;Kim, Uh-Hyun
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.295-300
    • /
    • 2006
  • Iron bound to heme appears to be more bioavailable than iron salts. A clinical study was performed to investigate the absorption efficiency of heme-iron and iron-salt products available. Heme-iron and nonheme-iron supplements have become available in Korea. We performed iron absorption studies to compare the absorption of heme-iron polypeptide (HIP) products made from digested hemoglobin, produced in Korea (HIPk) and imported from Japan (HIj), with that of iron salts. In the study, 80 subjects were divided into 5 groups (n=56): placebo group; 12 mg glucose, HIPk group; 12 mg iron as HIPk, HIj group; 12 mg iron as HIj, iron-salt group 1; 12 mg of iron as ferrous aminoacetate, and iron-salt group 2; 100 mg iron as ferrous aminoacetate. Changes in serum iron levels were measured at 3 and 5 hours post ingestion. Absorption of iron in HIPk was higher compared to HIj, iron-salt or placebo. There was a significant inverse correlation between low serum iron levels $(<80{\mu}g/dl)$ and iron absorption from HIPk. These results demonstrated that HIPk was more bioavailable, even taken with a meal, and would have potential advantages over iron salt or HIj as an iron supplement. Our results indicate that heme-iron absorption is regulated by iron status through a heme receptor, whereas iron-salt absorption is unregulated.

Application of Iron-Catalyzed Air Oxidation Process for Organics and Color Removals in Recalcitrance Flexographic Inks Wastewater (난분해성 후렉소잉크 폐수중 유기물 및 색도제거를 위한 철촉매 공기산화 공정의 적용)

  • Cho, Yong Duck;Yoon, Hyon Hee;Park, Sang Joong;Kim, Jong Sung;Lee, Sang-Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.487-498
    • /
    • 2006
  • The oxidation processes of metal catalysis were practically applied into the flexographic inks wastewater treatment to derive the most effective and economical system among all the processes of iron-salts coagulation, iron-catalyzed air oxidation, and coagulation followed by biological treatment. The iron concentration and pH were optimized as $2.8{\times}10^{-3}mol$ and 5.5~6.0, respectively, for all the oxidation processes. At the optimal reaction conditions, the removal efficiencies of $TCOD_{Mn}$ and Color were as follows for the respective process: i) 75% $TCOD_{Mn}$ and 77% Color removals for iron-salts coagulation, ii) 91% TCODMn and 90% Color removals for iron-catalyzed air oxidation, iii) 74~92% $TCOD_{Mn}$ and 81~90% Color removals for coagulation followed by biological treatment. Based on the economical and technological aspects, iron-catalyzed air oxidation was confirmed as the most effective process in the treatment of industrial wastewater.

Iron Bioavailability in Iron-fortified Market Milk (철분강화 우유의 생이용성 평가)

  • 김윤지
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.705-709
    • /
    • 1999
  • To evaluate iron bioavailability in iron fortified milk, in vitro and in vivo method were used. Low molecular weight components(ILC) from milk was isolated and iron was added, then soluble iron from ILC iron complex was determined. Each iron sources and extrinsically labelled with FeCl3 was used for measuring absorption rate of iron from ILC radiolabelled iron complexes as radioiron absorption into the blood one hour after injection into ligated duodenal loops of iron deficient rats. Iron absorption rate was in the order of ferrous lactate(25.56%)$\geq$ferric citrate(24.71%)$\geq$ferrous sulfate(19.67%) when 100ppm iron was used. In separate experiments, iron fortified milks with each iron sources were gavaged into iron deficient rats. When 25ppm iron was added to milk, the order of iron absorption was ferrous sulfate(12.52%)>ferrous lactate(8.07%)>ferric citrate(6.52%) (p<0.05). When 100ppm iron was added to milk, absorption rate was decreased compared to the treatments with added 25ppm of iron. Absorption rate of ferrous sulfate(5.34%) from milk added 100ppm iron was highly lowered, but ferric citrate(6.45%) was not significantly changed. The absorption rate of ferrous lactate(5.82%) was 70% of 25ppm iron added milk.

  • PDF

Improvement of Salt Accumulated Soil and Crop Growth using Coal Ash (석탄회를 이용한 염류집적 토양 개선과 작물 생육 증진)

  • Lee, Jong Cheol;Oh, Se Jin;Kang, Min Woo;Kim, Young Hyun;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • BACKGROUND: Cultivation area using agricultural plastic film facilities in Korea is rapidly increasing every year; however, it accelerates the salt accumulation in soils due to repeated cultivation and excessive use of chemical fertilizers. Coal ash contains various trace elements and has high potential to be used in agricultural purposes. This research was aimed to improve the quality of salts-accumulated soils and crop growth grown in the plastic film facilities using the soil amendment derived from coal ash and zero-valent iron powder. METHODS AND RESULTS: Soil amendment used in the study was manufactured using coal ash with iron powder and subjected to a typical upland soil for soil quality enhancement and two salts-accumulated soils for crop growth. After one month incubation of the salts-accumulated soils treated with the soil amendment, soil pH increased significantly and soil EC decreased by approximately 50%, compared to the control or the treatment without the soil amendment. Since the soil salts' concentration is proportional to EC, the subjected soil amendment can be proposed as an effective way to overcome soil salts accumulation in agricultural plastic film facilities. For crop growth, the length of roots and stems increased by approximately 10% and the dry weight also increased by a maximum of 75%, compared to the control. CONCLUSION: The soil amendment made from waste resources such as coal ash and zero-valent iron was found to not only be effective in improving salt-accumulated soils and crop yield but also be safe against harmful heavy metals.

A Study on Nitrogen and Phosphorus Removal in FNR Process (FNR process를 이용한 하수처리장의 질소.인의 제거에 관한 연구)

  • Cho Il-Hyoung;Lee Nae-Hyun;Lee Seung-Mok;Kim Young-Kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.571-577
    • /
    • 2006
  • This study make a comparison between the phosphorus removal performance of FNR(Ferrous Nutrient Removal) process and A/O process by the laboratory experiments. For simultaneous removal of phosphorus, iron electrolysis was combined with oxic tank. Iron precipitation reactor on the electrochemical behaviors of phosphorus in the iron bed. The phosphorus removal in FNR process was more than A/O process. Iron salts produced by iron electrolysis might help to remove COD and nitrogen. And the demanded longer SRT is the more removes the removes COD, nitrogen, and phosphorus. Also, FNR process of sludge quantity more reduce than A/O process to input cohesive agents.

Continuous dialysis of selected salts of sulphuric acid

  • Bendova, Helena;Snejdrla, Pavel;Palaty, Zdenek
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • The transport of selected salts of sulphuric acid (cobalt, copper, iron(II), manganese, nickel and zinc sulphate) through an anion-exchange membrane Neosepta-AFN was investigated in a counter-current continuous dialyzer at various salt concentrations and volumetric liquid flow rates. The basic transport characteristics - the rejection coefficient of salt and the permeability of the membrane - were calculated from measurements at steady state. The salt concentration in model mixtures was changed in the limits from 0.1 to 1.0 kmol $m^{-3}$ and the volumetric liquid flow rate of the inlet streams was in the limits from $8{\times}10^{-9}$ to $24{\times}10^{-9}m^3\;s^{-1}$. Under the experimental conditions given, the rejection coefficient of salts tested was in the range from 65% to 94%. The lowest values were obtained for iron(II) sulphate, while the highest for copper sulphate. The maximum rejection of salt was reached at the highest volumetric liquid flow rate and the highest salt concentration in the feed. The permeability ($P_A$) of the Neosepta-AFN membrane for the individual salts was in the range from $0.49{\times}10^{-7}m\;s^{-1}$ to $1.8{\times}10^{-7}m\;s^{-1}$ and it can be described by the following series: $P_{FeSO_4}$ < $P_{NiSO_4}$ < $P_{ZnSO_4}$ < $P_{CoSO_4}$ < $P_{MnSO_4}$ < $P_{CuSO_4}$. The permeability of the membrane was strongly affected by the salt concentration in the feed - it decreased with an increasing salt concentration.

Studies on the Leaching Constituent of Submerged Soil -I. Effects of Potassium Salts on Leaching of Minerals in Submerged Soil (논 토양성분(土壤成分)의 용탈(溶脫)에 관(関)한 연구(硏究) -I. 논 토양성분(土壤成分)의 용탈(容脫)에 미치는 가리염(加里塩)의 영향(影響))

  • Kim, Kwang-Sik;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 1983
  • These studies were carried out to investigate the effects of potassium salts on the changes of chemical properties in submerged soil. Rice plants were cultured in submerged soil using potassium salts. Obtained results were as follows. In the submerged soil cultured with rice plants the value of pH was higher in the potassium chloride plot than in the potassium sulfate plot. The leaching of cations such as calcium, magnesium, potassium and ammonium were higher in the potassium chloride plot than in the potassium sulfate plot. On the other hand, the leaching of phosphate ion was slightly higher in the potassium sulfate plot than in the potassium chloride plot. The leaching of iron was higher in the planted plot than in the non-planted plot, but that of silica was higher in the non-planted plot than in the planted plot. However, the leaching of iron and silica was not affected by potassium salts.

  • PDF

Heavy Metal Contents of Marketing Salts and Bay Salts by Heating (시판 소금의 중금속 함량과 천일염의 온도변화에 따른 중금속 함량)

  • 홍광택;이종영;장봉기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • In order to determine the content of heavy metal in common salts, 35 bay salt samples, 7 refined salt samples, 7 fine salt samples, 5 bake salt samples and 5 bamboo bake salt samples were collected from old market in major cities. Heating bay salt 35 samples, it made heating bay salt of $500^{\circ}C$, /TEX>(34 samples), heating bay salt of $1000^{\circ}C$(35 samples). These were analysed for contents of lead(Pb), cadmium(Cd), iron(Fe) and zinc(Zn) by atomic absorption spectrophotometer. The results were as follows : Mean content of lead in bay salts was $0.124{\pm}0.035ppm$ refined salt was $0.130{\pm}0.019ppm$, fine salt was $0.073{\pm}0.036ppm$ bake salt was $0.097{\pm}0.023ppm$, bamboo bake salt was $0.117{\pm}0.020ppm$, heating bay salt was $0.063{\pm} 0.021ppm$ in $500^{\circ}C$, heating bay salt was $0.063{\pm}0.039ppm$ in $1000^{\circ}C$. And bay salt refined salt bamboo bake salt were not significant one another. Mean content of cadmium in bay salts was $0.031{\pm}0.008ppm$ refined salt was $0.032{\pm}0.003ppm$, fine salt was $0.037{\pm}0.005ppm$, bake salt was $0.169{\pm}0.117ppm$ bamboo bake salt was $0.079{\pm}0.052ppm$, heating bay salt of $500^{\circ}C$ was $0.030{\pm}0.029ppm$ heating bay salt of $1000^{\circ}C$ was $0.017{\pm}0.013ppm$. And bay salt refined salt, fine salt were not significant one another. Mean content of iron in bay salts was $1.025{\pm}0, 634ppm$, refined salt was $0.359{\pm}0.163ppm$ fine salt was $0.267{\pm}0.068ppm$, bake salt was $2.929{\pm}1.963ppm$, bamboo bake salt was $5.378{\pm}3.676ppm$, heating bay salt of $500^{\circ}C$ was $0.847{\pm}0.315ppm$ heating bay salt of $1000^{\circ}C$ was $0.991{\pm}0.868ppm$. And bay salt refined salt, fine salt, bake salt, bamboo bake salt were significant one another(p<0, 01). Mean content of zinc in bay salts was $0.253{\pm}0.154ppm$, refined salt was $0.263{\pm}0.091ppm$ fine salt was $0.187{\pm}0.015ppm$, bake salt was $0.166{\pm}0.034ppm$, bamboo bake salt was $0.282{\pm}0.064ppm$, heating bay salt of $500^{\circ}C$ was $0.253{\pm}0.085ppm$, heating bay salt of $1000^{\circ} C$ was $0.242{\pm}0.179ppm$. And bay salt refined salt fine salt, bake salt, bamboo bake salt were not significant one another.

  • PDF