• Title/Summary/Keyword: iron removal

Search Result 445, Processing Time 0.025 seconds

A Study on Desalization and Corrosion Products Formed on Salinized Archaeological Iron Artifacts (침염시킨 철기 유물 표면 위에 형성된 부식 생성물과 탈염처리에 대한 연구)

  • Min, Sim-Kun;Lee, Jae-Hyung;Lee, Jae-Bong;An, Byeong-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.44-56
    • /
    • 2007
  • Excavated archaeological iron artifacts are usually conducted the conservation treatment for removal of chloride ions in the corrosion products. However, some iron artifacts are corroded again even after the conservation treatment due to unremoved chloride ions. Therefore, it is important to prevent desalinized artifacts from the occurrence of corrosion after the treatment. In this paper, we investigated the characteristics of corrosion products on salinized iron artifacts and evaluated the variety of desalination methods such as autoclave, intensive washing and NaOH. It was also found that ${\beta}-FeOOH$ (Akaganeite) played an important role on the occurrence of corrosion and the treatment for removal of chloride ions. The extents of desalination were compared between the desalination methods. Results showed that the autoclave method represented the highest efficiency for desalination while the intensive washing method was the lowest.

Removal of Rhodamine B using Electrocoagulation Process (전기응집 공정을 이용한 Rhodamine B의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1081-1088
    • /
    • 2009
  • The performance of a electrocoagulation (EC) process was examined for the removal of Rhodamine B (RhB) using iron electrode. The effects of operational parameters such as electrode material (aluminum and iron), current density, NaCl dosage, intial pH and initial dye concentration on RhB removal efficiency were investigated. The optimum range for each of these operating variables were experimentally determined. The experimental results showed that the iron is superior to aluminum as sacrificial electrode material. The optimum time of electrolysis, current density, NaCl dosage and pH were 10 min, 1630 A/$m^2$, 4 g/L and neutral pH, respectively. Under these conditions, RhB was effectively removed (> 93.4%) and also more than 80% of COD was removed (> 88.9%) when the initial concentration of RhB was 230 mg/L. The electrical energy consumption in the above conditions for the color and COD of RhB removal were 10.3 and 10.8 kWh/kg RhB, respectively. The electrocoagulation process could be a promising technology to treat dye wastewater containing RhB.

Removal of Aqueous Iron Ion by Micellar Enhanced Ceramic Microfiltration Adding Surfactant (계면활성제를 첨가한 미셀 형성 세라믹 정밀여과에 의한 용존 철 이온 제거)

  • Park, Jin Yong;Yu, Byeong Gwon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.190-194
    • /
    • 2009
  • In this study sodium dodecyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove iron ion that could be contained with small amount in industrial water. Then aggregates binding between iron ions and micelles were rejected by a ceramic microfiltration membrane. As result of SDS concentration effect on removal rates of iron and SDS in modified iron solution, the removal rate of iron was the highest value of 92.26% and the removal rate of SDS was 61.10% a little higher than the result of calcium ion at 8 mM which was CMC (Critical micelle concentration) of SDS. As final resistance of membrane fouling $R_f$ increased the more at the higher SDS concentration, it showed the highest value at 4 mM and the lowest at 10 mM of SDS. The final permeate flux $J_{180}$ had the highest value and the largest total permeate volume could be finally acquired at SDS 10 mM. In case of CMC 8 mM, low $R_f$ was shown as same as that of 10 mM until 80 minutes of operation, and tended to increase dramatically to 120 minutes and increase slowly again until 180 minutes.

Hydrochloric Acid Gas Removal from Iron and Steel Industry Using Micro-bubbles of a Dip Injection Wet Scrubber System (침액식 세정설비의 마이크로버블을 이용한 철강산업 공정의 산세조 발생 염화수소 제거)

  • Kim, Ye-Jin;Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.75-79
    • /
    • 2015
  • DIWS system was introduced to treat HCl gas from the scrubber of iron and steel industry according as the regulation of air quality is expected to be changed to 2ppm. pH of condensed water at stack was increased to 6.0. While 13.3ppm of inflow HCl was introduced to DIWS system, the average exhaust gas was 0.43ppm with 96.9% of removal efficiency. Compared with HCl data of TMS, the stable removal efficiency was shown in DIWS system, but the phenomenon of data hunting was also observed with different types of TMS apparatus.

Decolorization and organic removal characteristics of a SBR process combined with zero-valent iron column (ZVI (Zero-Valent Iron)를 조합한 SBR 공정의 색도 및 유기물 제거 특성)

  • Choi, YoungGyun;Park, ByungJu;Kim, SeongHong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.431-438
    • /
    • 2009
  • The purpose of this study was to evaluate the performances of zero-valent iron (ZVI) combined SBR (Z-SBR) process in decolorization and organic removal of synthetic dye wastewater. The batch test for optimizing the operation parameters of ZVI column showed that the appropriate EBCT was around 11 min and the pH of the dye wastewater was below 7.0. During the step increase of influent color unit from 300 to 1,000cu, about 53 to 79% decolorization efficiency could be achieved in control SBR (C-SBR, without ZVI column), which resulted from destroying azo bond of synthetic dye in anaerobic condition. For the same influent color loading, Z-SBR showed always higher decolorization efficiency than C-SBR with an aid of ZVI reducing power. The TCOD concentration in Z-SBR effluent was 20-30mg/L lower than C-SBR effluent although the TCOD before and after ZVI column was nearly same. It means that breakdown of azo bond by ZVI reducing power could increase biodegradability of synthetic dye wastewater.

The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water (강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구)

  • Choi, Seung-Chul;Kim, Se-Hwan;Yang, Hae-Jin;Lim, Jae-Lim;Wang, Chang-Keun;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

Arsenic Removal using the Surface Modified Granular Activated Carbon treated with Ferric Chloride (염화철(III)로 표면개질 활성탄을 이용한 비소제거)

  • Park, Y.R.;Hong, S.H.;Kim, J.H.;Park, J.Y.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The present study investigates treatment methods for removal of arsenic from wastewater. The granular activated carbon (GAC) with the coating of iron chloride ($FeCl_3$) was used for the treatment of a low concentration of arsenic from wastewater. Batch experiments were performed to investigate the synthesis of Fe-GAC (Iron coated granular activated carbon), effects of pH, adsorption kinetics and the Langmuir model. The synthesized Fe-GAC with 0.1 M $FeCl_3$ shows best removal efficiency. Adsorption studies were carried out in the optimum pH range of 4-6 for arsenic removal. The Fe-GAC showed promising results by removing 99.4% of arsenic. In the adsorption isotherm studies, the observed data fitted well with the Langmuir models. In continuous column study showed that As(V) could be removed to below 0.25 mg/L within 1,020 pore volume. Our results suggest that the surface modified granular activated carbon treated with $FeCl_3$ for effective removal of arsenic from wastewater.

Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate (나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정)

  • Min, Dongjun;Kim, Cheolyong;Ahn, Jun-Young;Cho, Soobin;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

Effect of Sludge Concentration on Removal of Heavy Metals from Digested Sludge by Thiobacillus ferrooxidans (Thiobacillus ferrooxidans를 이용한 소화 슬러지의 중금속 제거에 미치는 슬러지 농도의 영향)

  • 류희욱;김윤정;조경숙;강근석;최형민
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.279-283
    • /
    • 1998
  • To investigate the feasibility of the microbial process for removal of heavy metals from the high solid content sludge, the effect of sludge concentration on the solubilization of heavy metals by an iron oxidizing bacterium Thiolbacillus ferrooxidans was examined. With increasing the sludge concentration, the removal efficiency of heavy metals and the oxidation rate of iron were inhibited. Especially, when the sludge concentration is over 5% (w/v), the activity of T. ferrooxidans was remarkably inhibited. This inhibition is considered to occur due to the dissolved inhibitory materials such as organic compounds, heavy metals, and others which were extracted from the sludge during incubation period. In conclusion, the microbial process by T. ferrooxidans is only effectively used in ranges of 1.3 to 4.0% (w/v) sludge concentration.

  • PDF

Study on iron removal by S-HGMS from tungsten tailings

  • Jin, Jian-jiang;Li, Su-qin;Zhao, Xin;Guo, Peng-hui;Li, Fang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.17-20
    • /
    • 2020
  • Comprehensive utilization of tungsten tailings resources not only solves environmental problems but also creates huge economic benefits. The high content of iron impurity in tungsten tailings will have adverse effect on the downstream comprehensive utilization, whether flotation or pickling. In this paper, the Superconducting High Gradient Magnetic Separation(S-HGMS) is used to remove of Fe impurities from tungsten tailings. The optimal experimental parameters are as follows: background magnetic induction intensity is 3.0T, slurry flow velocity is 500ml/min. The Fe removal rate of Fe was 68.8% and the recovery rate was 59.53%.