• 제목/요약/키워드: iron parameter

검색결과 126건 처리시간 0.026초

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu;Zou, Zhongyue
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2276-2283
    • /
    • 2018
  • A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

피로수명예측을 위한 잔류강도 저하모델의 파라미터 결정법 제안(I) (A Proposal of Parameter Determination Method in the Residual Strength Degradation Model for the Prediction of Fatigue Life (I))

  • 김상태;장성수
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.874-882
    • /
    • 2001
  • The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique.

단계적 회귀분석과 인공신경망 모형을 이용한 광양항 석탄·철광석 물동량 예측력 비교 분석 (A Comparative Analysis of the Forecasting Performance of Coal and Iron Ore in Gwangyang Port Using Stepwise Regression and Artificial Neural Network Model)

  • 조상호;남형식;류기진;류동근
    • 한국항해항만학회지
    • /
    • 제44권3호
    • /
    • pp.187-194
    • /
    • 2020
  • 항만의 주요 정책 및 향후 운영계획 수립 시 정확한 물동량 예측에 관한 연구는 매우 중요하며 이러한 중요성으로 인해 관련 연구가 활발히 수행되고 있다. 본 논문에서는 국내 최대 석탄 및 철광석 처리 항만인 광양항을 대상으로 단계적 회귀분석과 인공신경망모형을 활용하여 모형간 예측력을 비교하였다. 2009년 1월부터 2019년 1월까지 총 121개월의 월별자료를 활용하였으며 석탄 및 철광석 물동량에 영향을 주는 요인을 선정하여 공급관련요인과 시장·경제관련요인으로 분류하였다. 단계적 회귀분석 결과, 광양항 석탄 물동량 예측모형의 경우, 입항선박 톤수, 석탄가격 및 대미환율이 최종변수로 선정되었고 철광석 물동량 예측모형의 경우, 입항선박 톤수, 철광석가격이 최종변수로 선정되었다. 인공신경망모형의 경우, 모델 성능에 영향을 미치는 다양한 Hyper-parameters를 조정하며 최적 모델을 선정하는 시행착오법을 사용하였다. 분석결과 인공신경망모형이 단계적 회귀분석에 비해 우수한 예측성능을 나타내었으며 예측 모형별 예측값과 실측값을 그래프 상 비교 시에도 인공신경망모형이 단계적 회귀분석에 비해 고·저점을 유사하게 나타냈다.

Effect of $H_2S$ Partial Pressure and pH of Test Solution on Hydrogen Induced Cracking of High Strength Low Alloy Steels

  • Kim, Wan Keun;Koh, Seong Ung;Kim, Kyoo Young;Yang, Boo Young;Jung, Hwan Kyo
    • Corrosion Science and Technology
    • /
    • 제4권6호
    • /
    • pp.236-241
    • /
    • 2005
  • Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of linepipe steels caused by $H_2S$ gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different $H_2S$ pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is $H_2S$ partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution.

Effects of Nutrient Levels on Cell Growth and Secondary Carotenoids Formation in the Freshwater Green Alga, Chlorococcum sp.

  • Liu, Bei-Hui;Haizhang, Dao;Lee, Yuan-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.201-207
    • /
    • 2000
  • The freshwater green alga Chlorococcum sp. grew on NH_4^{+},{\;}NO_3^{-}$, urea, yeast extract, and peptone as the nitrogen source showing similar pattens of growth and secondary carotenoid (SC) production. However, the most suitable nitrogen source for the induction fo SC was urea. The dffects of nutrient levels (urea, phosphate, sulfate, ferrous iron, and salt) on growth and SC production were stydied by varying the concentration of each nutrient in batch cultures. High biomass production was achieved in cultures containing 20-28 mM urea, 4.8-10 mM phosphate, 1.6 mM sulfate, 70 mM phosphate, 1.6 mM sulfate, 170 mM NACl, and $50{\;}\mu\textrm{M}$ iron. The optimum concentrations of nutrients for biomass and for the SC accumulation in biomass were evaluated and the two media for achieving high biomass production and SC production were thus developed. The extent to which each parameter to stimulate the formation of SC in the alga were varied and the potentially improned SC prodution by manipulating the nutrient levels in the modified media were descussed.

  • PDF

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

Equilibrium Concentration of Radionuclides in Cement/Groundwater/Carbon Steel System

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.127-137
    • /
    • 1997
  • Equilibrium concentrations of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment while it almost entirely exists as the precipitate of Fe(OH)$_3$(s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amount of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements cesium, strontium, cobalt nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system.

  • PDF

산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성 (Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst)

  • 황연;권순길;이효숙;제해준;박상일
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1162-1166
    • /
    • 2001
  • 석유화학 공정 중 Styrene(SM) 공정에서 발생되는 산화철 폐촉매는 산업 폐기물로서 전량 매립되고 있는데, 이를 출발 원료로 사용하여 NiZn-페라이트를 합성하였고 그 자기적 특성을 조사하였다. 산화철 폐축매 펠렛을 분쇄한 후 NiO 및 ZnO를 혼합하여 90$0^{\circ}C$에서 하소하고 123$0^{\circ}C$에서 5시간 소결하여 스핀넬형 페라이트 소결체를 얻었다. N $i_{x}$ Z $n_{1-x}$F $e_2$ $O_4$(x=0.36, 0.50, 0.66)조성에 대하여 초투자율을 측정하였고, S-parameter를 측정하여 반사 감쇄량을 계산하였다. 산화철 폐촉매를 이용하여 X-band 주파수 영역에서 높은 전자파 흡수능을 갖는 전파흡수체를 제조할 수 있음을 확인하였다.다.

  • PDF

회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가 (Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron)

  • 성용현;한승욱;최낙삼
    • 대한기계학회논문집A
    • /
    • 제41권8호
    • /
    • pp.721-728
    • /
    • 2017
  • 보통회주철(GC300)에 Cr, Mo, Cu 첨가제를 넣어 고급 회주철(HCI350)을 제작하고, 미세 조직과 기계적 물성치, 피로강도의 변화를 연구하였다. 주철을 환봉형과 평판형 주물로 제작하였으며, 이들을 절단 및 연마하여 나이탈 수용액으로 에칭한 후 미세조직의 면적비율을 측정하였다. 첨가물에 의해 편상 흑연결정(flake graphite)의 크기가 감소하고 고밀 펄라이트 함량이 증가하여 인장강도, 피로강도의 향상이 확인되었다. 피로시험 결과 획득한 피로수명 데이터를 바탕으로 최우추정법이 적용된 2모수 와이블 분포를 이용하여 확률-응력-수명 곡선을 산출하였다. 확률-응력-수명곡선 산출 결과 HCI350은 GC300에 비해 피로강도는 크게 개선되었고 수명데이터의 분산성은 낮아졌으나, 피로응력완화에 따른 피로수명의 증가가 크게 나타났다. 산출된 확률-응력-수명 곡선을 이용하여 요구수명 사이클 수에 대한 허용응력 값을 정량적으로 제시함으로써 신뢰성 수명설계에 위한 기초자료를 제시하였다.