• 제목/요약/키워드: iron oxide scale

검색결과 50건 처리시간 0.025초

Process Technology of the Direct Separation and Recovery of Iron and Zinc Metals Contained in High Temperature EAF Exhaust Gas

  • Furukawa, Takeshi;Sasamoto, Hirohiko;Isozaki, Shinichi;Tanno, Fumio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.393-397
    • /
    • 2001
  • The innovatory process, that is the direct separation and recovery of the iron and zinc metals contained in the high temperature exhaust gas generated from the electric arc furnace fer the inn scrap melting and/or the dust treatment, has been proposed. This proposed process consists of the moving coke bed filter that is directly connected to the electric furnace, and the following heavy metal condenser. The exhaust gas passes through the filter and the condenser right after exhausting from the electric furnace. The moving coke bed filter is being controlled at about 1000℃ and collects iron and slag components contained in the high temperature exhaust gas. Heavy metals such as zinc and lead pass through the filter as vapor. Based on the thermodynamic considerations, the iron oxide and the zinc oxide are reduced in the filter. The solution loss reaction rate is comparatively low at about 1000℃ in the coke bed filter by the analysis using the mathematical simulation model. The heavy metal condenser is installed in the position after the coke bed filter, and rapidly cools the gas from about 1000℃ to 450℃ by a full of the cooling medium like the solid ceramic ball in addition to the cooling from the wall. The zinc and lead vapor condense and separate f개m the gas in a liquid state. The investigation of the characteristics of the exhaust gas of the commercial electric arc furnace, the fundamental experiments of the laboratory scale and the bench scale ensured the formation of this proposed process. A small-scale pilot plant examination is carrying out at present to confirm the formation of the process. It is certain that the dust generation of the electric arc furnace is extremely decreased, and it can save the energy consumption of usual dust treatment processes by the realization of this process.

  • PDF

Corrosion of Carbon Steel with and without Aluminized Coating in (O, S, H)-containing Gases at 500-800℃

  • Lee, Dong Bok;Abro, Waheed Ali;Lee, Kun Sang;Abro, Muhammad Ali
    • 한국표면공학회지
    • /
    • 제50권2호
    • /
    • pp.85-90
    • /
    • 2017
  • The carbon steel formed the thick, somewhat porous, loosely adherent iron oxide scale when oxidized at $500-800^{\circ}C$ for 15 h in air. It formed the thicker, more porous, nonadherent scale consisting of FeS plus iron oxides in $Ar/1%SO_2$-mixed gas. It formed the much thicker, more porous, nonadherent scale consisting of FeS plus iron oxides in Ar/0.1% $H_2S$-mixed gas. However, the aluminized carbon steel formed the thin, protective $Al_2O_3$ surface scale even in $Ar/1%SO_2$-, and $Ar/0.1%H_2S$-mixed gas. Aluminizing drastically improved the corrosion resistance in (O, S, H)-containing gas.

High Temperature Behavior of Oxidized Mild Steel in Dry and Wet Atmospheres

  • Favergeon, J.;Makni, A.;Moulin, G.;Berger, P.;Lahoche, L.;Viennot, M.
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.224-232
    • /
    • 2008
  • During the hot rolling process, steels develop an oxide scale on their surface. This scale can affect the mechanical properties of the rolled steel and its surface aspect. The main problem comes from the mechanical integrity of the oxide scales which could delaminate or crack, leading eventually to later oxide incrustation within the steel. The objective of the present work is to qualify the mechanical integrity of the iron oxide scales during the hot rolling process. The laboratory experiments use a four point bending test to simulate the mechanical solicitation which takes place during the rolling sequence of the steel slabs. The oxide scales grow on a mild steel at $900^{\circ}C$ under wet or dry atmosphere and the oxidized steel is then mecahnically tested at $900^{\circ}C$ or $700^{\circ}C$. The high temperature four point bending tests are completed with microstructural observations and with the record of acoustic emission to follow in-situ the mechanical damages of the oxide scales. The results show the role of water vapor which promotes the scale adherence, and the role of the temperature as the oxide are more damaged at $700^{\circ}C$ than at $900^{\circ}C$.

미량 Ni 함유 저 합금강의 고온초기 산화거동 (Initial oxidation behavior in High temperature of low carbonsteel containing small amount Ni element.)

  • 손근수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.179-184
    • /
    • 1999
  • When the steel containing Si is oxidated in hi temperature, Re2O3, Red scale is made on the metal side as the spike phase, and this scale invasion into matrix. Therefore, it affects the feature, after rolling. It is reported that the role of Si is FeO/Fe2SiO4 eutectic compound, but Si can not affect pure iron independently. There must be Ni, then the spike phase can exist. Prominence and depression made by Ni that is necessity at the process to work iron. Therefore, in this study after the change of the amount of Ni in pure iron and steel and oxidation, the structure of the oxide and the surface, and the distribution of the elements were considered. In conclusion, at 100$0^{\circ}C$, 110$0^{\circ}C$, 120$0^{\circ}C$ the curves of oxidation weight are all S curves. Especially, in the beginning of oxidation as the amount of Ni increase, the amount of oxidation also increase. Practical steel has less oxidation than pure steel added Ni. There is much FeO in Fe-Ni alloy, compare to practical steel which has much Fe3O4. Especially, we could know considerable Ni was concentrated on the metal side in Fe-Ni alloy, practical steel. and the surface of the scale.

  • PDF

전파를 이용한 철산화물 스케일 박막 특성 연구 (Characterization of iron oxide scale films using radio frequency waves)

  • 문성진;신동식;윤힘찬;박위상
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.55-60
    • /
    • 2009
  • 본 논문은 철강 제품의 제조 공정 중에 철강 표면에 불규칙하고 불균일하게 형성되는 스케일의 특성 분석에 관한 것이다. 고온에서 제작되는 철강 제품은 공기 중의 산소와 접촉하여 단 시간에 철산화물을 형성하게 된다. 이러한 철산화물을 스케일이라고 한다. 스케일은 철강 제품의 산화막 역할을 하여 제품 표면을 보호하는 역할도 하지만 불균일하게 현성된 스케일은 오히려 철강 제품의 외관을 해치게 되며 추가 공정 시에 적잖은 문제 거리가 된다. 산세공정을 통해 산(acid)으로 스케일을 제거하는 공정이 있지만 이 공정 또한 스케일의 특성 파악이 전제가 된지 않은 상태로 시행되고 있는 실정이다. 따라서 본 논문에서는 보다 효과적이고 효율적인 공정을 위하여 스케일의 특성 파악에 대한 내용을 소개하며, 이에 전파가 이용된다. 전파를 이용하여 스케일의 분포, 접합 특성, 철강 코일의 스케일 분포 등을 연구할 수 있는 실험 장비를 소개한다. 또한 이론적 분석과 간단다한 시뮬레이션으로 통하여 이의 타당성을 입증한다.

  • PDF

Ti-6Al-4V, Ti-4Fe, Ti-(1,2)Si합금의 고온산화 (High Temperature Oxidation of Ti-6Al-4V, Ti-4Fe, Ti-(1,2)Si Alloys)

  • 박기범;이동복
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.135-141
    • /
    • 2001
  • Arc-melted Ti-6Al-4V, Ti-4Fe and Ti-(1,2) Si alloys were oxidized at 700, 800, 900 and $1000^{\circ}C$ in air. The oxidation resistance of Ti-4Fe was comparable to that of Ti-6Al-4V, while the oxidation resistance of Ti-(1,2) Si was superior to that of Ti-6Al-4V. Ti-2Si displayed the best oxidation resistance among the four alloys, but failed after oxidation at $1000^{\circ}C$ for 17h. The oxide scale formed on Ti-6Al-4V, Ti-4Fe and Ti-(1,2)Si consisted of ($TiO_2$ and a small amount of $Al_2$$O_3$), ($TiO_2$ and a small amount of dissolved iron), and ($TiO_2$ plus a small concentration of amorphous $SiO_2$), respectively. The oxide grains of the surface scale of the four alloys were generally fine and round.

  • PDF

심리스 튜브 제조공정 시 피어싱 플러그의 파손거동 (Failure Behavior of Piercing Plug during Seamless Tube Manufacturing Process)

  • 임영빈;윤정모
    • 열처리공학회지
    • /
    • 제30권5호
    • /
    • pp.207-214
    • /
    • 2017
  • In this study, failure behavior of piercing plug for seamless tube manufacturing process was studied. Three different kinds of passed piercing plugs (10, 90, 215 times) were prepared. The shape deformation of the passed piercing plugs was observed by 3D coordinate measuring machine, and the oxidized layer on the surface of piercing plug was observed by optical microscopy. The length reduction of piercing plug presented at 215 times passed plug. It was found that the oxidized layer consisted of outer scale, inner scale and internal oxidation layers, and the inner scale layer had vertical cracks, and interfaces had horizontal cracks. We proposed the failure mechanism of piercing plug during seamless tube manufacturing process based on the formation of vertical and horizontal crack.

SEM을 이용한 상수도 금속관 부식거동에 관한 연구 (A study on corrosion mechanism of water steel pipes using SEM)

  • 황상용
    • 환경위생공학
    • /
    • 제17권4호
    • /
    • pp.53-60
    • /
    • 2002
  • This experiment was performed to investigate the characteristics of corrosion mechanism of water steel pipes using SEM(Scanning Electron Microscope) from March 1. 2002 to November 30. The characteristics shown in these results can be summarized as the following: 1. When I investigated to the characteristics of iron pipes and zinc pipes using a SEM, I could be found that there was a distintion in interface between an iron pipe and the scale, and that a zinc pipe wears a dark color. 2. I find much rate of $Fe_2O_3$ and a little rate of FeS as corrosion products, but I hardly find $FeCO_3$without carbon. 3 It was found that the oxide corrosion rate was 0.2~0.3mm/year. And then A-1 was 0.323mm/year that was very high.

Fe-2%Ni 합금의 고온 산화 (High-temperature Oxidation of Fe-2%Ni Alloys)

  • 이동복;정재옥;박순용;조규철;;김민정
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.104-109
    • /
    • 2018
  • Fe-2 wt.%Ni alloys were fabricated by metal powder injection molding, and their oxidation behavior at $600-700^{\circ}C$ for 30 h in air was studied in order to find the effect of the small addition of Ni in the iron matrix on the high-temperature oxidation. Oxide scales that formed after oxidation consisted primarily of $Fe_2O_3$, where microscopic voids were scattered. Nickel was segregated initially at the scale/matrix interface, and later at the lower part of the $Fe_2O_3$ scale. At $600^{\circ}C$, Fe-2wt.%Ni alloys oxidized parabolically initially, and linearly after 15 h. At $650-700^{\circ}C$, they oxidized linearly from the initial period. Although Fe-2wt.%Ni alloys oxidized slower than pure iron, their oxidation rates were relatively fast.