• Title/Summary/Keyword: iron furnace

Search Result 188, Processing Time 0.024 seconds

Injection of Waste Plastics into the Blast Furnace and Its Effect on Furnace Conditions

  • Heo, Nam-Hwan;Baek, Chan-Yeong;Yim, Chang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.755-758
    • /
    • 2001
  • Most of the waste plastics are incinerated and landfilled now, leading to much environmental problems. The technology of injection into the blast furnace was developed as a useful recycling method of waste plastics, and applied to the actual operation in several ironmaking companies. We carried out the test operation to inject continuously the two kinds of waste plastics through four tuyeres of the Foundry blast furnace in POSCO by 130 ton of total amount. From this test operation, we analyzed the coke replacement ratio, the permeability, the heat load and other changes of furnace conditions with the injection of waste plastics into the blast furnace. Some trials based upon the theoretical approaches were applied to examine the efficiencies of blast furnace.

  • PDF

Analysis of Reducing Characteristics of Direct Reduced Iron using Blast Furnace Dust

  • Yun, Young Min;Chu, Yong Sik;Seo, Sung Kwan;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.444-449
    • /
    • 2016
  • Industrial by-products generated by integrated iron and steel manufacture cause environmental pollution. The by-products contain not only iron element but also harmful substances. Therefore, in view of to waste recycling and environmental preservation, production of sponge iron using the by-product is considered an effective recycling method. In this study, reduction efficiency of pellets from blast furnace dust was measured. Metallization was found to be increased, as $C/Fe_{total}$ ratio and reaction time were increased. The pellets were formed into a globular shape, and calcined for 60 minutes at $1100^{\circ}C$ in an electric furnace. Phase changes were analyzed using an X-ray diffractometer. Microstructures of the pellets were observed by a scanning electron microscope.

Research on the ancient iron technology of Jungwon, the center of iron industry (제철산업의 중심 중원에서 고대 제철기술을 탐구하다)

  • Do, Eui Chul;Lee, Eun Woo;Seok, Je Seop;Jang, Min Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.1
    • /
    • pp.148-165
    • /
    • 2015
  • Iron was one of the most influential factors for formation and development of ancient countries. The diffusion of ironware had increased agricultural productivity and brought about military technical revolution. Needless to say, the rise and fall of the countries depended on the possession of stable iron production. Raw materials and fuels are the key factors for mass production of iron and a transportation route is essential to supply the goods. Jungwon area satisfies the three factors. There are many iron manufacture sites such as Jincheon Seokjang-ri Gusan-ri, and Chunju Chilgeum-dong Tangeumdae earthen ramparts in the Jungwon area. In order to study the ancient iron manufacture technique, reconstitution experiment was carried out using restored furnace which was made based on the Jincheon Seokjang-ri B-23 furnace. Some notable results were identified with the experiment as in the followings. Firstly, a roasting process has a connection with the decrease of hardness of the iron ore. Secondly, melting of the blast pipe as well as the formation of product within the furnace had a crucial effect on the cessation of the experiment. Thirdly, reduced iron in various locations within the furnace prove that there was enough reducing environment during the working. Not only melting point but also properties of iron can vary depending on the carbon contents. For the reason, formation of approximate environment in which iron can react to the chalcoal is the most important factor in terms of iron manufacture.

Analysis of Iron Production Technology of Army against Japanese through Slag from Saengsoegol Iron Production Site

  • Kim, Minjae;Chung, Kwangyong
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.317-329
    • /
    • 2019
  • Slag was collected from the iron-producing furnace site in Saengsoegol, Baegun mountain, where iron was manufactured by a righteous army against Japan in the Gwangyang region; then, the iron-manufacturing technique of the early modern period was investigated through scientific analysis. In the microstructure analysis results of the selected samples, iron bloom was mainly observed together with magnetite and fayalite. In the component analysis results of the compounds, it was confirmed that the furnace was built by using gangue of alkali feldspar or plagioclase series, and the ironmaking work was performed at a high temperature of at least 1050℃, because mullite was identified together with cristobalite and hercynite. Based on the chemical composition, it was speculated that low-grade iron ores were used as raw materials, and it seemed that the yield was low, because the total Fe content of the smelting slag samples was 37.72-49.93%. It was difficult to confirm whether a slag former was used, and it seemed that materials easily obtained nearby were used when the furnace was built, without considering the corrosion resistance. It appeared that the ironmaking work was performed at the Gwangyang Saengsoegol iron-producing furnace based on the direct ironmaking method in an environment that could escape the vigilance of the Japanese Empire to produce weapons that would be used for the resistance against Japan. It seemed that there was neither an advanced ironware production system nor a mass production system, and small-scale works were performed in short periods of time.

Scientific Analysis of Slags and Furnace Wall collected from Iron Production Site at Suryong-ri Wonmorongi in Chungju (충주 수룡리 원모롱이 야철지 수습 철재 및 노벽의 과학적 분석)

  • Cho, Hyun-Kyung;Cho, Nam-Chul;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • This study focused on iron making related information through analyzing slags and furnace wall collected from iron production site of Suryong-ri Wonmorongi, Chungju. Total Fe content of slags were from 36.98% to 44.47% and this range was general recovery rate of iron in ancient. Compounds of calcium included slags was supposed to add intentionally during smelting process as deoxidation agent in order that these helped to separate iron from impurities. Furnace wall didn't make of high alumina clay because of low $Al_2O_3$. Microstructure and main components of slags show that No. 1 to 3 slags with fayalite and wustite were products of iron ore smelting. However, No.4 slag is more likely to smelt by iron sand because of ulvospinel with $TiO_2$ in No. 4 slag. Therefore, iron ore were not only used but iron sand in smelting and furnace wall made of general clay with low $Al_2O_3$ content in this area.

Numerical Simulation of the Liquid Flow in the Lower Part of the Blast Furnace - A Cold Flow Case (고로하부 액체유동에 대한 수치해석 사례 - 냉간유동)

  • Jin, Hong-Jong;Choi, Sang-Min;Jung, Jin-Kyung
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.33-41
    • /
    • 2008
  • The high permeability of the gas in the molten iron of the dripping zone of the blast furnace is a major factor in achieving the stable operation of a furnace with high productivity. Basic studies of the liquid flow behavior in a packed bed are necessary to grasp the effect of various operational changes on conditions in the dropping zone. Molten iron and slag together playa critical role in the lower zone, transporting mass and energy, while impairing and redistributing the gas flow. In turn, molten iron and slag undergo physical and chemical changes, and are redistributed radially as they descend to the hearth. In this research, mathematical formulations are derived for the gas and the liquid. The solid phase is fixed with constant porosity. The information for the molten iron and slag includes the hold-up, velocity, pressure, and information related to the areas of interaction between the gas and the liquid, and the solid and the liquid. Predictable results include the velocity, pressure and temperature distribution. Additional parameters include the packed particle size and the air blast rate.

  • PDF

Study on the Iron Production Process through the Analysis of By-Products Found at Jiǔdiàn Iron Production Site, China

  • Bae, Chae Rin;Cho, Nam Chul;Jo, Young Hoon;Chen, Jianli
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.273-281
    • /
    • 2018
  • $Ji{\check{u}}di{\grave{a}}n$ iron production site in China is a relic smelting site, which in the past produced pig iron. In this study, scientific analysis of the smelting furnace and collected slag was conducted to reveal some aspects of the ancient Chinese smelting technique. A 3D model of the smelting furnace showed a narrow lower part and an upper section which increased in diameter upwards. Although the smelting furnace relic does not include the upper part and its complete shape cannot be predicted, the remaining part suggests that the furnace had a larger diameter in the central part compared to the upper and lower parts. Most of the collected slag was completely vitrified. Long prismatic fayalite was observed in the matrix of some samples. The iron particles contained phosphorus, which could not be discharged during smelting work. In addition, as the $CaO/SiO_2$ ratio was 0.42 or lower in the results of the content analysis, no CaO slag former had been added. However, the ratio of $CaO/SiO_2$ to $Al_2O_3/SiO_2$ did not have a constant trend. This needs to be investigated in a further study.

Reexamination of Ancient Ironmaking Technology Restoration Experiment Operating Methods (고대 제철기술 복원실험 조업방식에 대한 재검토 - 국립중원문화유산연구소 1~8차 복원실험을 중심으로 -)

  • CHOI Yeongmin;JEONG Gyeonghwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.6-25
    • /
    • 2024
  • This study concentrated on a report on the results of smelting experiments conducted eight times by the Jungwon National Research Institute of Cultural Heritage, put together the goals and results of the operation, and examined changes in the content of experiments and in the experimental results. First, changes related to operation, such as the ratio of raw materials to fuel and the presence or absence of additives, were reviewed depending on the operation goal. In addition, the results of metallurgical analysis of raw materials, formations, and byproducts were summarized and reviewed by comparing them with materials excavated from the ruins. The operation method varied up to the eighth smelting experiment in terms of iron ore roasting, additives, and raw material/fuel ratio. After reviewing the results again, pure iron with a low carbon content began to be confirmed through metallurgical analysis. As a result, it was confirmed that the charging ratio of raw materials and fuel plays an important role depending on the purpose of production. In addition, most of the products are gray cast iron, and it was deemed that this is due to changes in the internal structure of the pig iron while it was left in the furnace for a long time. The iron was an ingot that was in a molten state even though the carbon content did not reach 4.3%, where the process reaction takes place, and it was deemed to have been caused by excessive operating temperature. Based on the previously reviewed results and the structure and shape of the experimental furnace used in other ironmaking technology restoration experiments, this study finally attempted to restore the structure of an ancient iron smelting furnace, including the furnace's upper structure. By comprehensively referring to the remaining conditions of the excavated iron smelting furnace and the characteristics of the blow pipe, the form of the ancient iron smelting furnace was subdivided into six categories: furnace wall thickness, furnace height, blower height, blow pipe size, furnace inner wall shape, and top shape, and a restoration plan was proposed. To improve the problems of the restoration plan and the Jungwon National Research Institute of Cultural Heritage's experiments that have been conducted through continuous trial and error, an experiment that reflects changes in operating methods by lowering the furnace height and controlling the blowing volume is necessary.

Process Technology of the Direct Separation and Recovery of Iron and Zinc Metals Contained in High Temperature EAF Exhaust Gas

  • Furukawa, Takeshi;Sasamoto, Hirohiko;Isozaki, Shinichi;Tanno, Fumio
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.393-397
    • /
    • 2001
  • The innovatory process, that is the direct separation and recovery of the iron and zinc metals contained in the high temperature exhaust gas generated from the electric arc furnace fer the inn scrap melting and/or the dust treatment, has been proposed. This proposed process consists of the moving coke bed filter that is directly connected to the electric furnace, and the following heavy metal condenser. The exhaust gas passes through the filter and the condenser right after exhausting from the electric furnace. The moving coke bed filter is being controlled at about 1000℃ and collects iron and slag components contained in the high temperature exhaust gas. Heavy metals such as zinc and lead pass through the filter as vapor. Based on the thermodynamic considerations, the iron oxide and the zinc oxide are reduced in the filter. The solution loss reaction rate is comparatively low at about 1000℃ in the coke bed filter by the analysis using the mathematical simulation model. The heavy metal condenser is installed in the position after the coke bed filter, and rapidly cools the gas from about 1000℃ to 450℃ by a full of the cooling medium like the solid ceramic ball in addition to the cooling from the wall. The zinc and lead vapor condense and separate f개m the gas in a liquid state. The investigation of the characteristics of the exhaust gas of the commercial electric arc furnace, the fundamental experiments of the laboratory scale and the bench scale ensured the formation of this proposed process. A small-scale pilot plant examination is carrying out at present to confirm the formation of the process. It is certain that the dust generation of the electric arc furnace is extremely decreased, and it can save the energy consumption of usual dust treatment processes by the realization of this process.

  • PDF

A Survey of Heavy Metal Concentrations in Casting Work Environment (일부 주조작업장 공기중 분진 중금속 농도)

  • Kim, young-Sik;Kim, Gyu-Kwang;Han, Hong
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 1992
  • A study was performed to measure the heavy metal concentrations of suspended particles in iron castings during February, 1990. The heavy metal concentrations were analyzed using patricles atomic absorption spectrophotometer. The results were as fellows 1. The concentrations of suspended paticles by casting process were at furnace 4.19mg/m$^{3}$ at pouring 2.93mg/m$^{3}$ at nonferrous furnace 3.90mg/m$^{3}$, at molding 1.17mg/m$^{3}$, jung ja 2.23mg/m$^{3}$, desanding 5.42mg/m$^{3}$, sand treatment 4.82mg/m$^{3}$, finishing 1,20mg/m$^{3}$. 2. Among the total of 8 iron casting workplaces, the concentrations Fe of furnace was 0.36mg/m$^{3}$, Cu of nonferrous furnace 0.02mg/m$^{3}$, Pb of pouring 0.02mg/m$^{3}$, Cr of desanding 0.01mg/m$^{3}$ and Mn of furnace 0.03mg/m$^{3}$.

  • PDF