• Title/Summary/Keyword: iron chelation

Search Result 27, Processing Time 0.027 seconds

Bio-guided Isolation of Natural Iron Chelators from Mangifera indica Leaves and their Comparative Study to Desferal®

  • Suliman, Sara N.;ElNaggar, Mai H.;Elsbaey, Marwa;El-Gamil, Mohammed M.;Badria, Farid A.
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Through bio-guided isolation, two natural iron chelators were isolated from Mangifera indica L. leaves, identified as mangiferin (1) and iriflophenone-3-C-𝛽-D-glucoside (2). Their iron-chelating activity was compared to that of Desferal® using bipyridyl assay and EDTA as a standard. Mangiferin showed the highest activity with IC50 value of 0.385 mM (162.85 ㎍/mL). Furthermore, two combinations of mangiferin with Desferal® (M-D) and iriflophenone-3-C-𝛽-D-glucoside (M-I) were evaluated. The results showed that mangiferin potentiated the iron chelation activity of Desferal® about 46%, also that M-I combination is a promising candidate formula for iron chelation therapy. In addition, mangiferin and Desferal-iron complexes were prepared and characterized by IR, UV, and Mass spectra to compare their mode of chelation to iron. Their structural stability was studied by DFT calculations. Furthermore, they displayed increased ABTS antioxidant activity when bound to iron as compared to their free form, which enhances their pharmacological importance.

p-Terphenyls from Fungus Paxillus curtisii Chelate Irons: A Proposed Role of p-Terphenyls in Fungus

  • Lee, In-Kyoung;Ki, Dae-Won;Kim, Seong-Eun;Lee, Myeong-Seok;Song, Ja-Gyeong;Yun, Bong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.652-655
    • /
    • 2013
  • Diverse p-terphenyl compounds, named curtisians, have been isolated from the fungus Paxillus curtisii, and degradation of wood by this fungus is thought to be progressed by iron chelation of p-terphenyl curtisians. In this study, the iron chelation ability of p-terphenyls has been proved by chrome azurol S (CAS) assay, reducing power, and UV-visible spectroscopic analyses. The catechol moiety of p-terphenyl is an essential factor for the potent iron chelation ability, and thus deacylated curtisian with a tetrahydroxyl moiety in the central ring of p-terphenyl is more effective than acylated curtisians.

Chelation of Tannin from Sorghum Extract using Fe(II) (수수 타닌의 Fe(II) 킬레이트)

  • Jung, Yang Sook;Seo, Hyo Sik;Bae, Do Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • This study investigated the chelation of a sorghum bran extract using iron (Fe) as a new natural colorant. The composition of the sorghum bran extract and chelation conditions were both examined. The thermal properties of the chelated colorants were analyzed using differential scanning calorimetry (DSC) and a thermal analyzer system(TGA). The sorghum bran extract solution showed a maximum absorbance at 281 nm based on UV/Vis spectrophotometry. According to the chelation pH conditions, pH 7.5 was the most effective. The chelation of the sorghum bran extract increased rapidly when increasing the iron concentration up to 2 mg/L, with no further chelation at a higher concentration. The particle size distribution curve for the chelated tannin revealed four groups: $4.5{\sim}17{\mu}m$, $20{\sim}42{\mu}m$, $45{\sim}80{\mu}m$, and $83{\sim}160{\mu}m$. In a DSC analysis, endothermic peaks attributed to the pyrolysis of the extract and chelated tannin were found at $318^{\circ}C$ and $415^{\circ}C$, respectively. In a TGA analysis, the chelation was shown to increase the final degradation temperature from $253^{\circ}C$ to $382^{\circ}C$, confirming that the chelation improved the thermal stability.

Effects of Basil Extract and Iron Addition on the Lipid Autoxidation of Soybean Oil-in-Water Emulsion with High Oil Content (고지방 물속 콩기름 에멀션의 지방질 자동 산화에서의 바질 추출물과 철 첨가 효과)

  • Kim, Jihee;Lee, Haein;Choe, Eunok
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2017
  • Purpose: Lipid autoxidation of a soybean oil-in-water emulsion with high oil content was studied under after basil extract and/or iron addition. Methods: The emulsion consisted of tocopherol-stripped soybean oil (40 g), citrate buffer (60 g, pH 4.0), and/or $FeSO_4$ (0.5 mg) with 75% ethanol extract (200 mg/kg) of basil (Ocimum basilicum). Lipid oxidation was evaluated using headspace oxygen content, hydroperoxide contents, and p-anisidne values of the emulsion. Polyphenol compound retention in the emulsion during oxidation was determined spectrophotometrically. Results: Addition of basil extract significantly (p<0.05) decreased reduced hydroperoxide contents of the emulsion, and iron significantly (p<0.05) increased anisidine values and decreased oxygen contents. Co-addition of basil extract and iron showed significantly (p<0.05) lower reduced hydroperoxide contents in the emulsion than compared to those of the emulsion with added iron and the control emulsion without basil extract nor or iron. During the emulsion oxidation, polyphenol compounds in the emulsion with added basil extract were degraded, but more slowlywhich was slowed degraded in the presence of iron. Conclusion: The iIron increased the lipid oxidation through hydroperoxide decomposition, and basil extract showed antioxidant activity through radical-scavenging and iron-chelation. Polyphenol degradation was decelerated by iron addition, which suggested suggests iron chelation may be more preferred topreferentially activated over radical scavenging in the antioxidant action by of basil extract in the oil-in-water emulsion with high oil content.

Antimicrobial activity of fermented Maillard reaction products, novel milk-derived material, made by whey protein and Lactobacillus rhamnosus and Lactobacillus gasseri on Clostridium perfringens

  • Kim, Yujin;Kim, Sejeong;Lee, Soomin;Ha, Jimyeong;Lee, Jeeyeon;Choi, Yukyung;Oh, Hyemin;Lee, Yewon;Oh, Nam-su;Yoon, Yohan;Lee, Heeyoung
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1525-1531
    • /
    • 2021
  • Objective: The objective of this study was to evaluate the antimicrobial effects of fermented Maillard reaction products made by milk proteins (FMRPs) on Clostridium perfringens (C. perfringens), and to elucidate antimicrobial modes of FMRPs on the bacteria, using physiological and morphological analyses. Methods: Antimicrobial effects of FMRPs (whey protein plus galactose fermented by Lactobacillus rhamnosus [L. rhamnosus] 4B15 [Gal-4B15] or Lactobacillus gasseri 4M13 [Gal-4M13], and whey protein plus glucose fermented by L. rhamnosus 4B15 [Glc-4B15] or L. gasseri 4M13 [Glc-4M13]) on C. perfringens were tested by examining growth responses of the pathogen. Iron chelation activity analysis, propidium iodide uptake assay, and morphological analysis with field emission scanning electron microscope (FE-SEM) were conducted to elucidate the modes of antimicrobial activities of FMRPs. Results: When C. perfringens were exposed to the FMRPs, C. perfringens cell counts were decreased (p<0.05) by the all tested FMRPs; iron chelation activities by FMRPs, except for Glc-4M13. Propidium iodide uptake assay indicate that bacterial cellular damage increased in all FMRPs-treated C. perfringens, and it was observed by FE-SEM. Conclusion: These results indicate that the FMRPs can destroy C. perfringens by iron chelation and cell membrane damage. Thus, it could be used in dairy products, and controlling intestinal C. perfringens.

Case of an Iron Overload Patient Who Discontinued Iron Chelation Therapy and Was Treated with Saenggangunbi-tang (철 킬레이트화 치료를 중단한 철과잉증 환자의 생간건비탕을 사용한 치험 1례)

  • Juyoung Lee;Cho Hyun Hwang;Eunkyung Lee;Eungyeong Jang;Jang-Hoon Lee;Youngchul Kim
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.252-259
    • /
    • 2023
  • Objectives: This study identified the effect of Korean medicine treatment on a patient with iron overload who discontinued iron chelation therapy. Methods: A 64-year-old woman with iron overload was treated with Saenggangunbi-tang from November 14, 2022, to March 15, 2023, to reduce fatigue and improve laboratory findings. We observed changes in the symptoms and improvement of laboratory findings during the four-month treatment. Results: The approximately four-month treatment with Saenggangunbi-tang showed considerable improvement in laboratory findings and fatigue. In addition, no adverse effects, such as liver injury, were observed during Korean medicine treatment. Conclusion: This study suggests the availability of Saenggangunbi-tang as a therapeutic option for managing patients with iron overload.

Chelation of Thallium (III) in Rats Using Combined Deferasirox and Deferiprone Therapy

  • Salehi, Samie;Saljooghi, Amir Sh.;Badiee, Somayeh;Moqadam, Mojtaba Mashmool
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.299-304
    • /
    • 2017
  • Thallium and its compounds are a class of highly toxic chemicals that cause wide-ranging symptoms such as gastrointestinal disturbances; polyneuritis; encephalopathy; tachycardia; skin eruptions; hepatic, renal, cardiac, and neurological toxicities; and have mutagenic and genotoxic effects. The present research aimed to evaluate the efficacy of the chelating agents deferasirox (DFX) and deferiprone (L1) in reducing serum and tissue thallium levels after the administration of thallium (III), according to two different dosing regimens, to several groups of Wistar rats for 60 days. It was hypothesized that the two chelators might be more efficient as a combined therapy than as monotherapies in removing thallium (III) from the rats' organs. The chelators were administered orally as either single or combined therapies for a period of 14 days. Serum and tissue thallium (III) and iron concentrations were determined by flame atomic absorption spectroscopy. Serum and tissue thallium (III) levels were significantly reduced by combined therapy with DFX and L1. Additionally, iron concentrations returned to normal levels and symptoms of toxicity decreased.

Effect of intravenous deferoxamine in multiply transfused patients (대량 수혈을 받은 환아들에서 정맥 투여한 deferoxamine의 효과)

  • Oh, Sang Min;Kang, Joon Won;Kim, Sun Young
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.12
    • /
    • pp.1225-1230
    • /
    • 2007
  • Purpose : Multiple transfusions in patients with chronic anemia can result in excessive iron deposition in tissues and organs. Effective iron chelation therapy in chronically transfused patients can only be achieved when iron chelators remove sufficient amounts of iron equivalent to those accumulated in the body from transfusions, thus leading to maintain body iron load at a non-toxic level. This study was retrospectively carried out to investigate the effect of intravenous iron chelation therapy with deferoxamine in patients who have received multiple transfusions. Methods : From March 2005 to January 2007, 15 patients who have received multiple transfusions were included in this study. Transfusion dependent patients were defined as those receiving >1 packed red blood cell (RBC) units/month for at least 6 months. They received intravenous deferoxamine for 7 days (10-30 mg/kg/day, 24 hour continuous infusions). Before and after deferoxamine infusions and 3 months later, we compared serum iron, TIBC, and ferritin in transfusion dependent patients and transfusion independent patients. Results : There were 6 males and 9 females and their age range was 5.6-21.3 (median 8.3) years. Transfusion dependent patients were 7 and 8 were transfusion independent states after stem cell transplantation or chemotherapy. There was no significant change in ferritin level after deferoxamine treatment for the transfusion dependent patients but significant falling of ferritin level was observed for the transfusion independent patients 3 months later compared with baseline ferritin level (P=0.046). Some adverse events were observed but symptoms were mild and tolerable. Conclusion : Seven days of intravenous deferoxamine was safe and effective in transfusion independent patients. In transfusion dependent patients, chelation therapy should be maintained, in order to minimize or prevent iron accumulation and storage in the tissues.

Antioxidant Studies on the Methanol Stem Extract of Coscinium fenestratum

  • Shirwaikar, Arun;Punitha, I.S.R.;Shirwaikar, Annie
    • Natural Product Sciences
    • /
    • v.13 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • The methanol extract of Coscinium fenestratum, commonly own as tree turmeric, which is widely used in the indigenous system of medicine was studied for its in vitro scavenging activity in different methods viz DPPH scavenging, nitric oxide scavenging, iron chelation activity, superoxide scavenging, ABTS radical scavenging and lipid peroxidation. The results were analyzed statistically by regression method. Its antioxidant activity was estimated by $IC_{50}$ value and the values are $57.1\;{\mu}g/ml$ for DPPH radical scavenging, $36.5\;{\mu}g/ml$ for iron chelating activity, $51.7\;{\mu}g/ml$ for nitric oxide scavenging, $53.63\;{\mu}g/ml$ for ABTS scavenging, $44.2\;{\mu}g/ml$ for superoxide scavenging, and $40\;{\mu}g/ml$ for lipid peroxidation. In all the methods, the extract showed its ability to scavenge free radicals in a concentration dependent manner. The results indicate that C. fenestratum has potent antiofidant activity.