• Title/Summary/Keyword: iron alloy

Search Result 294, Processing Time 0.028 seconds

Improved Magnetic Properties of Silicon-Iron Alloy Powder Core

  • Lee, Tae-Kyung;Kim, Gu-Hyun;Choi, Gwang-Bo;Jeong, In-Bum;Kim, Kwang-Youn;Jang, Pyung-Woo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1191-1192
    • /
    • 2006
  • Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy are not totally because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss. From our experiments, we were able to achive a core loss of $390mW/cm^3$ at 0.1 T and 50 kHz through proper processes and a permeability $\mu_{eff}$ of 68 at low frequency.

  • PDF

Microstructural Modification of High-Fe Containing A356 Alloy by Liquid Metal Shearing Process (용융금속 교반공정을 통한 고Fe 함유 A356 합금의 미세조직 개질)

  • Kim, Bong-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.354-361
    • /
    • 2011
  • The liquid metal shearing device was constructed and assembled with a commercial high-pressure die-caster in order to induce intensive turbulent shearing force on molten aluminum alloys. The effect of the liquid metal shearing on the microstructure and tensile properties of A356 alloys was investigated with the variation of iron content. The experimental results show that dendritic primary ${\alpha}$-Al phase was effectively modified into a equiaxed form by the liquid metal shearing. It was also found that the needle-like ${\beta}$-AlFeSi phase in a Fe containing A356 alloy was changed into a blocky shape resulting in the improved mechanical properties. Based on the mechanical properties, it was suggested that the iron content in A356 alloy could be more widely tolerated by utilizing the liquid metal shearing HPDC process.

The Effect of Excess Samarium Oxide on the Preparation of Sm-Fe Alloy Powder by Reduction-diffusion Method (환원-확산법에 의한 Sm-Fe 합금분말 제조시 Sm2O3 첨가량의 영향)

  • Kwak, Hun;Lee, Jung-Goo;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.336-341
    • /
    • 2009
  • To produce alloy powders with only Sm$_2$Fe$_{17}$ single phase by reduction-diffusion (R-D) method, the effect of excess samarium oxide on the preparation of Sm-Fe alloy powder during R-D heat treatment was studied. The quantity of samarium oxide was varied from 5% to 50% whereas iron and calcium were taken 0% and 200% in excess of chemical equivalent, respectively. The pellet type mixture of samarium, iron powders and calcium granulars was subjected to heat treatment at 1100$^{\circ}C$ for 5 hours. The R-D treated pellet was moved into deionized water and agitated to separate Sm-Fe alloy powders. After washing them in deionized water several times, the powders were washed with acetic acid to remove the undesired reaction products such as CaO. By these washing and acid cleaning treatment, only 0.03 wt% calcium remained in Sm-Fe alloy powders. It was also confirmed that the content of unreacted $\alpha$-Fe in Sm$_2$Fe$_{17}$ matrix gradually decreased as the percentage of samarium oxide is increased. However, there was no significant change above 40% excess samarium oxide.

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

Corrosion characterization of Fe-aluminide alloys with various sulphuric acid solution ($H_2SO_4$ 수용액 변화에 따른 철 알루미나이드 합금의 부식특성)

  • Lee, B.W.;Choi, H.L.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Corrosion characterization of Fe-XAl-0.3Y(X=5, 10, 14 wt%) alloys in $0.1{\sim}1N$ sulphuric acid at room temperature was studied using potentiodynamic techniques. The morphology and components of corrosion products on surface of Fe-aluminide alloys were investigated using SEM/EDX, XRD. The potentiodynamic polarization curve of alloys exhibited typical active, passive, transpassive behaviour. Corrosion potential($E_{corr}$) and corrosion current density($I_{corr}$) values of Fe-XAl-0.3Y alloys followed linear rate law. $E_{corr}$ of 10Al alloy and 14Al alloy was ten times lower than 5Al alloy. Icorr of 14Al alloy was five times lower than 5Al alloy. The passive film on the surface of Fe-5Al-0.3Y alloy was formed iron oxide. Fe-10Al-0.3Y and Fe-14Al-0.3Y alloys passive films were aluminium oxide. especially, Fe-14Al-0.3Y alloy showed good corrosion resistance in $0.1{\sim}1N$ sulphuric acid. This is attributed to the forming of protective $Al_2O_3$ oxide on the surface of Fe-14Al-0.3Y alloy.

  • PDF

HYDROGEN DECREPITATION AND MAGNETIC PROPERTIES OF $Sm_{2}Fe_{17}-TYPE$ ALLOY MODIFIED WITH A SMALL ADDITION OF Nb

  • Kwon, H.W.;Harris, I.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.432-436
    • /
    • 1995
  • The hydrogen decrepitation behaviour of the $Sm_{2}Fe_{17} alloy containing 4at%Nb was examined by means of DTA and SEM metallography, and the magnetic properties of the alloy were studied by means of VSM or TMA. It has been found that a simple hydrogenation and degassing treatment for the alloy caused a poor hydrogen decrepitation. The cycle treatment consisting of repeated hydrogenation and degassing, however, caused a severe hydrogen decrepitation with a combination of intergranular and transgranular failure. The disproportionation temperature of the hydrogenated $Sm_{2}Fe_{17}-type alloy was enhanced significantly by small addition of Nb. It has also been found that the Curie temperature of $Sm_{2}Fe_{17} matrix phase in the Nb-containing alloy has been enhanced by the hydrogenation, and this was attributed to the increase in interatomic distance between the neighbouring iron atoms caused by the interstitial occupancy of the hydrogen atom into the $Sm_{2}Fe_{17}-type lattice. The magnetisation of the $Sm_{2}Fe_{17} alloy containing Nbwas found to be lower than that of the Nb-free alloy, and this was explained by the dilution effect due to the presence of the paramagnetic $Sm_{2}Fe_{17} phase.

  • PDF

Morphology and Segregation of Sulfide Inclusions in Cast Steels (II) (Influence of [Mn/S] Ratios on the Morphology of Sulfide Inclusions in Fe-Mn-S Alloys) (주강의 유화물 형태와 편석에 대한 연구 (II) (Fe-Mn-S 합금의 유화물 형태에 미치는 Mn/S비의 영향))

  • Park, Heung-Il;Kim, Ji-Tae;Kim, Woo-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.270-276
    • /
    • 2009
  • After casting button-type small ingots of ternary Fe-Mn-S alloys which had three different Mn/S ratios (1, 5 and 70) in a vacuum arc furnace, the effect of the ratio on the sulfide formation was investigated. In case of the Mn/S ratio of 1, if alloy composition was located in an iron-rich corner on a Fe-Mn-S ternary phase diagram, only duplex MnS-FeS sulfide films were observed in the grain boundary. If the alloy composition was located in the miscibility gap area of the phase diagram, primary globular dendritic sulfides and dendritic sulfide slags were generated within the grain and tubular monotectic sulfides were also detected in the grain boundary. When the Mn/S ratio was 5, if the alloy composition was in the iron-rich corner, only bead-like sulfides were generated. On the other hand, if the composition was in the miscibility gap area, globular dendritic sulfides and dendritic sulfide slags were generated in the form of primary sulfide inclusions and rod-like eutectic sulfides were observed in the grain boundary. Especially, if the contents of Mn and S increased more in the miscibility gap area of the phase diagram, primary globular sulfides containing iron intrusions were observed. In case of Mn/S ratio of 70, if the contents of Mn and S was decreased in the Fe corner of the phase diagram, only bead-like sulfides were observed in the grain boundary. Despite the composition was outside the miscibility gap area of the phase diagram, if the contents of Mn and S increased, clusters of fine sulfide particles as well as fine spherical primary monophase sulfides were observed in the grain boundary.

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition (에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성)

  • Ryu, Hyun-Sam;Lim, Tae-Seop;Ryu, Jung-Ho;Park, Dong-Soo;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.