• Title/Summary/Keyword: iron alloy

Search Result 294, Processing Time 0.038 seconds

Corrosion and Sliding Properties of the Nickel-Based Alloys for the Valve Seats Application

  • Honda, Tadashi
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.92-98
    • /
    • 2008
  • This paper describes the experiments of the corrosion and the sliding tests of the nickel-based alloys for the gate valve seating materials used at high pressure and temperature. The general corrosion rates and IGC susceptibility are tested in pressurized water at 533 K and 575 K and in Strauss test solution. The sliding tests have been done in pressurized water at 293 k, 473 K and 573 k. The alloys containing above 10% chromium may have the anti-corrosion properties that could be applied to the valve seats for the power plants. The good sliding performance and the good pressure tightness are obtained when the disc specimens that have hardness 500 to 600 Hv combined with the seat specimens that have hardness 250 to 410 Hv containing about 40 percent of iron. The large size gate valves sliding tests have certified the test results. The anti-wear properties of the seat alloy and the anti-IGC susceptibility of the disc alloy could be improved by the addition of silicon and niobium, respectively.

Fabrication of Ultrafine Tungsten-based Composite Powders by Novel Reduction Process (신공정에 의한 초미립 텅스텐계 복합분말 제조)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.338-342
    • /
    • 2012
  • A novel chemical method was evaluated to fabricate the ultrafine tungsten heavy alloy powders with bater-base solution made from the ammonium metatungstate (AMT), iron(II) chloride tetrahydrate ($FeCl_2{\cdot}4H_2O$), nickel(II) chloride hexahydrate ($NiCl_2{\cdot}6H_2O$) as source materials and the sodium tungstate dihydrate ($NaWO_4{\cdot}2H_2O$) as Cl-reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition(wt.%). The obtained powders were characterized by X-ray diffraction, XRF, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

Oxidation Study on the Fabrication of Fe-36Ni Oxide Powder from Its Scrap

  • Yun, Jung Yeul;Park, Man Ho;Yang, Sangsun;Lee, Dong-Won;Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2013
  • A study of oxidation kinetic of Fe-36Ni alloy has been investigated using thermogravimetric apparatus (TGA) in an attempt to define the basic mechanism over a range of temperature of 400 to $1000^{\circ}C$ and finally to fabricate its powder. The oxidation rate was increased with increasing temperature and oxidation behavior of the alloy followed a parabolic rate law at elevated temperature. Temperature dependence of the reaction rate was determined with Arrhenius-type equation and activation energy was calculated to be 106.49 kJ/mol. Based on the kinetic data and micro-structure examination, oxidation mechanism was revealed that iron ions and electrons might migrate outward along grain boundaries and oxygen anion diffused inward through a spinel structure, $(Ni,Fe)_3O_4$.

Improvement of Fracture Toughness in 7XXX Series Aluminum Alloy Forings (7XXX계 알루미늄합금 단조재의 파괴인성 개선)

  • Song, K.H.;Lee, O.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 1998
  • The aim of this study is to investigate the effect of impurity level and fabrication processes on the strength, impact and fracture toughness of 7075, 7050 and 7175 aluminum alloy forgings. A specially processed 7175S-T74 aluminum forgings was superior to a conventionally processed 7075-T73, 7050-T74 and 7175-T74 aluminum forgings in both strength and toughness. The reduction of impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. A further reduction of the amount of second phase particles has been observed by applying a special fabrication process. This phenomena result from the application of intermediate soaking at higher temperature and more sufficiant hot working temperature than that of a conventional processing.

  • PDF

Segregation of Squeeze Cast Al-7% Si-0.3% Mg Alloy Bars (용탕단조한 Al-7%Si-0.3% Mg합금 봉상시료의 편석거동)

  • Kim, Ki-Young;Ki, Seok-Do;Park, Jong-Rak
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • Squeeze casting has advantages to improve mechanical properties of nonferrous castings without losing high productivity. Sound pore free structure makes it possible to be subjected to heat treatment and welding. This process became popular to produce lighter automobile parts alternating cast iron parts. It has, however, two disadvantages of segregation and scattered structure due to the solidified layers in sleeve. In this study segregation behavior of squeeze cast Al-7%Si-0.3%Mg alloy bars was investigated using HVSC machine under various injection conditions. Degree of segregation decreased with injection pressure and effect of injection velocity on it was small. Segregation mode of solute was strongly governed by solidification mode and flow pattern.

  • PDF

Comparison of the Microstructure and Mechanical Property between Gravity Casting Forging and Rheo-diecasting Forging using A356 Alloy (A356 합금의 중력 주조/단조와 Rheo-diecasting/단조의 미세조직 및 기계적 특성 비교)

  • Lee, Jun-Young;Lim, Jae-Yong;Lee, Seung-Yong;Moon, Seoug-Won;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.210-214
    • /
    • 2013
  • Recently, the automotive industry has replaced cast iron to lightweight materials like aluminum for engine efficiency of automobiles and an emission control by government. In this paper we studied two auto parts manufacturing methods using an alloy of A356. That is gravity casting and H-NCM Rheo-diecasting forging. We analyzed the microstructure and mechanical properties for this method. In Microstructure analysis results, H-NCM Rheo-diecasting forging has more finer microstrucre and better forging effect. Resulting in better mechanical properties than gravity forging.

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF

Effect of dilution on micro hardness of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel plate for sodium-cooled fast reactor applications

  • Balaguru, S.;Murali, Vela;Chellapandi, P.;Gupta, Manoj
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.589-596
    • /
    • 2020
  • Many components in the assembly section of Sodium-cooled Fast Reactor are made of good corrosionresistant 316 LN Stainless Steel material. To avoid self-welding of the components with the coolant sodium at elevated temperature, hardfacing is inevitable. Ni-based colmonoy-5 is used for hardfacing due to its lower dose rate by Plasma Transferred Arc process due to its low dilution. Since Ni-Cr-B-Si alloy becomes very fluidic while depositing, the major height of the weld overlay rests inside the groove. Hardfacing is also done over the plain surface where grooving is not possible. Therefore, grooved and ungrooved hardfaced specimens were prepared at different travel speeds. Fe content at every 100 ㎛ of the weld overlay was studied by Energy Dispersive Spectroscopy and also the micro hardness was determined at those locations. A correlation between iron dilution from the base metal and the micro hardness was established. Therefore, if the Fe content of the weld overlay is known, the hardness at that location can be obtained using the correlation and vice-versa. A new correlation between micro hardness and dilution coefficient is obtained at different locations. A comparative study between those specimens is carried out to recommend the optimum travel speed for lower dilution.

Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water (Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동)

  • Lee, Kwon-Yeong;Oh, Young-Min;Lee, Min-Woo;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.