• Title/Summary/Keyword: iridium glass

Search Result 9, Processing Time 0.023 seconds

A Study on the Sediment Transport using Radioisotope Tracer (방사성동위원소 추적자를 이용한 표사이동 추적실험)

  • Choi Byung-Jong;Jung Sung-Hee;Kim Jong-Bum;Lee Jong-Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.162-170
    • /
    • 2004
  • On the basis of the radiotracer technology and the related equipments which have been developed for its industrial application through the nuclear long-term research project, a radiotracer study on sediment transport was carried out as a part of the development of the radiotracer technology for a coastal environment. The crystalline material doped with iridium having a similar composition and specific gravity as those of the bedload sand collected from the research area was produced by the oxide-route method. A radioisotope container was specially designed to inject the radiotracer from 1 m above the sea bedload without radioactive contamination during the transport from the nuclear reactor at KAERI. The position data from the DGPS and the radiation measurement data were collected concurrently and stored by means of the application software programmed with the LabVIEW of the National Instrument. The position data was reprocessed to represent the real position of the radiation probe under water and not that of the DGPS antenna on board. The time dependency of the spatial distribution of the sediment was studied in the area through three tracking measurements after the iridium glass was injected. This trial application showed the potential of the radiotracer technology as an important role for maintaining and developing the coastal environment in the future.

Re-Ir Coating Effect of WC Core Surface for Aspheric Glass Lens Molding (비구면 Glass 렌즈 성형용 초경합금 코어면 Re-Ir 코팅 효과)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.441-441
    • /
    • 2007
  • As Rhenium-Iridium{Re-Ir) coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass lens for mobile phone module having 3 mega pixel and 2.5X zoom, and molding core(WC) was manufactured having performed ultra-precision machining. Effects of Re-Ir coating on form accuracy (P-V) of molding core and surface roughness(Ra) were measured and evaluated.

  • PDF

A Study on Influence of PV and Ra with Re-Ir Coating of WC Core Surface for Glass Molding Lens (성형용 초경합금(WC) 코어면의 Re-Ir 코팅이 형상정도와 표면조도에 미치는 영향에 관한 연구)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.808-811
    • /
    • 2007
  • Aspheric glass lens have recently been used in camera phone module because they are more effective than spherical ones. In this paper, the grinding condition of the tungsten carbide molding core has been found after applying DOE to the development of the aspheric glass lens for the 3 Megapixel and 2.5x camera-phone module. Also, the ultra precision grinding process was investigated under this condition by experiment. Re-Ir coating was applied on the ground surface of the tungsten carbide molding core. The influence of Re-Ir coating on the form accuracy and surface roughness of molding core was compared and evaluated. The form accuracy and surface roughness of the molding core were improved by application of Re-Ir coating on the surface of the tungsten carbide molding core.

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Synthesis and Crystal Structure of Blue Phosphorescent mer-Tris(2',6'-difluoro-2,3'-bipyridinato-N,C4') Iridium(III)

  • Jung, Na-Rae;Lee, Eun-Ji;Kim, Jin-Ho;Park, Hyoung-Keun;Park, Ki-Min;Kang, Young-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.183-188
    • /
    • 2012
  • A blue phosphorescent $Ir(dfpypy)_3$ (dfpypy:fluorinated pyridine-pyridine ligand) complex with meridional configuration has been synthesized by newly developed effective method and its solid state structure and photoluminescence are characterized. For this complex, mer-$Ir(dfpypy)_3$, the glass-transition and decomposition temperatures appear at $160^{\circ}C$ and $384^{\circ}C$ respectively in TGA and DSC experiments, which indicates that this complex has high thermal stability. In a crystalline structure, an average Ir-C bond length of mer-$Ir(dfpypy)_3$ is slightly longer than that of fac-$Ir(dfpypy)_3$, which assumed to be due to the weak trans-influence. The absorption and emission spectra are observed more red-shifted in mer-$Ir(dfpypy)_3$ than fac-$Ir(dfpypy)_3$. In addition, the former is readily oxidized than the latter in electrochemical behavior.

Properties of the Phosphorous Polymer Light Emitting Diodes with PVK:Ir(ppy)$_3$ Emission layer (PVK:Ir(ppy)$_3$ 발광부를 갖는 고분자 인광 발광다이오드의 특성평가)

  • Baek, Seung-Jun;Gong, Su-Cheol;Lee, Ho-Sub;Jang, Seong-Kyu;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.363-365
    • /
    • 2010
  • 고분자 발광다이오드(polymer light emitting diode, PLED)는 초박막화, 초경량화가 가능하며 간단한 용액공정 으로 향후 휨성(flexible) 디스플레이로의 응용이 가능할 것으로 기대되고 있다. 본 연구에서는 녹색 고분자 유기 발광다이오드를 제작하고, 효율을 향상 시키고자 이중 발광층을 두어 전기 광학적 특성을 평가하였다. ITO/Glass기판 위에 정공주입층으로 PEDOT:PSS [poly(3,4-ethylenedio xythiophene):poly(styrene sulfolnate)]를 발광물질로는 형광 발광물질인 PVK(poly-vinylcarbazole)와 인광 발광 물질인 Ir(ppy)$_3$[tris(2-phenylpyridine) iridium(III)]를 각각 host와 dopant로 사용하였다. 정공 차단층 및 전자 수송층 두 개의 역할로 사용 가능한 TPBI(1,3,5-tris(2-N-phenylbenzimidazolyl) benzene)를 진공 열증착법으로 막을 형성하였다. 전자주입층으로 LiF(lithium flouride)와 음극으로 Al(aluminum)을 증착하여 최종적으로 ITO/PEDOT:PSS/PVK:Ir(ppy)$_3$/TPBI/LiF/Al 구조를 갖는 녹색 형광:인광 혼합 유기 발광 다이오드를 제작하였다.

  • PDF

Heteroleptic Phosphorescent Iridium(III) Compound with Blue Emission for Potential Application to Organic Light-Emitting Diodes

  • Oh, Sihyun;Jung, Narae;Lee, Jongwon;Kim, Jinho;Park, Ki-Min;Kang, Youngjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3590-3594
    • /
    • 2014
  • Blue phosphorescent $(dfpypy)_2Ir(mppy)$, where dfpypy = 2',6'-difluoro-2,3'-bipyridine and mppy = 5-methyl-2-phenylpyridine, has been synthesized by newly developed effective method and its solid state structure and photoluminescent properties are investigated. The glass-transition and decomposition temperature of the compound appear at $160^{\circ}C$ and $360^{\circ}C$, respectively. In a crystal packing structure, there are two kinds of intermolecular interactions such as hydrogen bonding ($C-H{\cdots}F$) and edge-to-face $C-H{\cdots}{\pi}(py)$ interaction. This compound emits bright blue phosphorescence with ${\lambda}_{max}=472nm$ and quantum efficiencies of 0.23 and 0.32 in fluid and the solid state. The emission band of the compound is red-shifted by 40 nm relative to homoleptic congener, $Ir(dfpypy)_3$. The ancillary ligand in $(dfpypy)_2Ir(mppy)$ has been found to significantly destabilize HOMO energy, compared to $Ir(dfpypy)_3$, $(dfpypy)_2Ir(acac)$ and $(dfpypy)_2Ir(dpm)$, without significantly changing LUMO energy.