• 제목/요약/키워드: ionospheric electron density

검색결과 44건 처리시간 0.033초

Study the effect of strong magnetic storm on the ionosphere of August 2003 in the China region

  • Debao, Wen;Yunbin, Yuan;Jikun, Ou;Xingliang, Huo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.191-193
    • /
    • 2006
  • The ionospheric strom evolution process was monitored during the 18 August 2003 magnetic strom over China, through inversion of the ionospheric electron density from GPS observations. The temporal and spatial variations of the ionosphere were analysed as a time series of ionospheric electron density profiles. Results show that the main ionospheric effects of the storm over China under consideration are: the positive storm phase effect usually happens in the low latitudinal ionospheric; the negative storm phase effect occurs in the middle latitude, and the equatorial anomaly structure can be found as well.

  • PDF

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho;Park, Young-Deuk;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.319-327
    • /
    • 2010
  • We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002) than low solar activity (2006-2008). It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF) Bs (IMF Bz <0) component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

A Study on Accuracy Improvement of SBAS Ionospheric Correction Using Electron Density Distribution Model

  • Choi, Bong-Kwan;Han, Deok-Hwa;Kim, Dong-Uk;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권2호
    • /
    • pp.59-68
    • /
    • 2019
  • This paper proposed a method to estimate the vertical delay from the slant delay, which can improve accuracy of the ionospheric correction of SBAS. Proposed method used Chapman profile which is a model for the vertical electron density distribution of the ionosphere. In the proposed method, we assumed that parameters of Chapman profile are given and the vertical ionospheric can be modeled with linear function. We also divided ionosphere into multi-layer. For the verification, we converted slant ionospheric delays to vertical ionospheric delays by using the proposed method and generated the ionospheric correction of SBAS with vertical delays. We used International Reference Ionosphere (IRI) model for the simulation to verification. As a result, the accuracy of ionospheric correction from proposed method has been improved for 17.3% in daytime, 10.2% in evening, 2.1% in nighttime, compared with correction from thin shell model. Finally, we verified the method in the SBAS user domain, by comparing slant ionospheric delays of users. Using the proposed method, root mean square value of slant delay error decreased for 23.6% and max error value decreased for 27.2%.

전리층 전기전도도의 추정과 관련된 불확실성 (UNCERTAINTIES INVOLVED IN THE IONOSPHERIC CONDUCTIVITY ESTIMATION)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권4호
    • /
    • pp.243-254
    • /
    • 2002
  • Sondrestrom 비간섭 산란 레이더로부터 구한 전자밀도분포를 이용하여, 전리층의 전기전도도를 추정할때 야기되는 불확실성들을 검토하였다. 첫째, 실제로 관측된 전자밀도와 전자와 양이온의 온도차이 및 Debye length효과를 보정한 전자밀도를 사용했을 경우에 야기되는 전리층 전기전도도의 차이점을 비교하였다. 보정한 전자밀도로부터 추정된 전기전도도는 실측 전자밀도를 사용했을 때 보다 큰 값을 나타내었다. 둘째, 전기전도도 추정에 이용되는 전자-중성대기 및 양이 온-중성대기의 충돌빈도모델에 따른 차이점도 비교해 보았다. 약 110km 이하의 고도에서는 전기전도도가 충돌빈도모델에 크게 의존하지 않았지만, 약 110km 이상의 고도에서는 이용된 모델에 따라 전기전도도의 값이 달랐다. 셋째, 전자 및 양이온의 부정확한 온도측정이 전기전도도의 추정에 미치는 영향을 알아보았다. 전자 및 양이온의 온도측정에 약 10% 이내의 오차가 포함된 경우가 전기전도도의 계산에는 큰 영향을 미치지 않았다. 마지막으로, 고도 적분된 전기전도도의 추정시 적용되는 적분 구간에 대해서도 검토해 본 결과, Hall 및 Pedersen 전기전도도의 값이 각각 하부 및 상부 적분 고도의 선택에 매우 민감하다는 것이 밝혀졌다.

KSR-3 과학로켓용 전자환경 측정기 개발 (DEVELOPMENT OF LANGMUIR AND ELECTRON PROBE FOR KSR-III)

  • 황승현;김준;김준규;이수진;장영순;박정주;조광래;원영인
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.249-256
    • /
    • 2001
  • 한국항공우주연구원에서는 지난 1998년 KSR-2 촤학로켓에 이온층 전자환경 측정기를 탑재하여 한반도 상공의 전자 밀도, 전자 온도, 부동 전위등을 측정하는데 성공하였다. 이온층 전자환경 측정기는 한반도 상공 이온층의 전자 온도와 밀도를 측정하는데 목적이 있다. 이번 연구에서는 2002년 상반기 발사 예정인 KSR-3 과학로켓에 탑재될 전자환경 측정기를 개발하였고 일본에서 우주 환경 모사 실험을 수행하여 측정기의 성능을 확인하였다. 전자환경 측정기는 랑뮈어 프로브(Langmuir Probe)와 전자 온도 프로브(Electron Temperature Probe)로 구성되어 있으며 이 센서들의 측정 결과로부터 이온층의 전자 밀도와 온도에 대한 정보를 얻을 수 있다. 이렇게 개발된 전자환경 측정기로부터 신뢰성 있는 자료를 얻는다면 IRI(International Reference Ionosphere) 모델이나 PIM(Parameterized Ionospheric Model)과 비교하여 한반도 상공의 이온층 전자 환경에 대한 이해를 돕는데 기여할 수 있을 것으로 기대된다.

  • PDF

Steep plasma density gradient at middle latitudes observed by DMSP and TOPEX during the magnetic storm of 11-12 April 2001

  • Park, Sa-Rah;Kim, Khan-Hyuk;Kil, Hyo-Sub;Jee, Geon-Hwa;Lee, Dong-Hun;Goldstein, J.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.26.3-27
    • /
    • 2011
  • Formation of a steep plasma density gradient in the middle-latitude ionosphere during geomagnetic storms and the latitudinal migration of its location depending on the storm phase are suggested to be associated with the ionospheric signature of the plasmapause. We test this idea by using the satellite and ground observation data during the 11 April 2001 storm. The locations of the steep plasma density gradient identified by TOPEX/Poseidon (2001 LT) and DMSP (1800 and 2130 LT) satellites coincide with the ionospheric footprints of the plasmapause identified by the IMAGE satellite. This observation may support the dependence of the middle-latitude plasma density gradient location on the plasmapause motion, but does not explain why the steep density gradient whose morphology is largely different from the morphology of the middle-latitude ionization trough during quiet period is formed in association with the plasmapause. The ionospheric disturbances in the total electron content (TEC) maps shows that the steep TEC gradient is formed at the boundary of the positive ionospheric storm in low-middle latitudes and the negative ionospheric storm in middle-high latitudes. We interpret that the thermospheric neutral composition disturbance in the dayside is confined within the middle-high latitude ionospheric convection zone. The neutral composition latitudes and, therefore, the locations of the steep plasma density gradient coincide with the footprints of the plasmapause. The TEC maps show that the appearance of the steep plasma density gradient in the pre-midnight sector during the recovery phase is related to the co-rotation of the gradient that is created during the main phase.

  • PDF

Analysis of Martian topside ionospheric data obtained from Mars Advanced Radar for Subsurface and Ionospheric Sounding onboard Mars Express

  • 김어진;서행자;김주현;이주희;최기혁;심은섭
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.105.2-105.2
    • /
    • 2012
  • The upper ionosphere of Mars has been explored by many spacecraft like Mariners, Mars, Viking, and recently by MGS and MEX. MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) aboard Mars Express Orbiter is operating from August 2005. MARSIS provides topside ionospheric traces, of which yield electron density profiles for altitudes above the primary ionospheric peak. A large amounts of data is useful for investigation of the Martian ionospheric environments under the changing conditions like solar activity, seasons, and solar zenith angle. We studied the characteristics of the Martian ionosphere through analysis of MARSIS data in the various conditions. We expect that our results contribute for understanding of the Martian ionospheric environment.

  • PDF

Characteristics of the Ionospheric Mid-Latitude Trough Measured by Topside Sounders in 1960-70s

  • Hong, Junseok;Kim, Yong Ha;Lee, Young-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.121-131
    • /
    • 2019
  • The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF