• 제목/요약/키워드: ionizing energy

검색결과 175건 처리시간 0.033초

Risk Assessment from Heterogeneous Energy Deposition in Tissue. The Problem of Effects from Low Doses of Ionizing Radiation

  • Le, Feinendegen;J, Booz
    • 대한핵의학회지
    • /
    • 제26권1호
    • /
    • pp.8-13
    • /
    • 1992
  • Low doses of ionizing radiation from external or internal sources cause heterogeneous distribution of energy deposition events in the exposed biological system. With the cell being the individual element of the tissue system, the fraction of cells hit, the dose received by the hit, and the biological response of the cell to the dose received eventually determine the effect in tissue. The hit cell may experience detriment, such as change in its DNA leading to a malignant transformation, or it may derive benefit in terms of an adaptive response such as a temporary improvement of DNA repair or temporary prevention of effects from intracellular radicals through enhanced radical detoxification. These responses are protective also to toxic substances that are generated during normal metabolism. Within a multicellular system, the probability of detriment must be weighed against the probability of benefit through adaptive responses with protection against various toxic agents including those produced by normal metabolism. Because irradiation can principally induce both, detriment and adaptive responses, one type of affected cells may not be simply summed up at the expense of cells with other types of effects, in assessing risk to tissue. An inventory of various types of effects in the blood forming system of mammals, even with large ranges of uncertainty, uncovers the possibility of benefit to the system from exposure to low doses of low LET radiation. This experimental approach may complement epidemiological data on individuals exposed to low doses of ionizing radiation and may lead to a more rational appraisal of risk.

  • PDF

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • 한국육종학회지
    • /
    • 제40권1호
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Effects of Ionizing Radiation on Plants and the Radiological Protection of the Environment

  • Stanislav A. Geras'kin;Kim, Jin-Kyu
    • 환경생물
    • /
    • 제21권4호
    • /
    • pp.321-327
    • /
    • 2003
  • Differences between the principles for the radiological protection of man and the environment are compared. The derived levels of exposure for man and biota recommended by the international agencies with dose rates for chronic radiation producing effects at different levels of biological organization were given in terms of the biological effects. Cytogenetic effects on plants after an exposure to ionizing radiation at low doses alone and in combination with other factors are discussed. A wide range of experimental data were analysed and the general conclusions were extracted to cover the topics such as non-linearity of dose response, synergistic and antagonistic effects of the combined exposure of different factors, radiation-induced genomic instability, and the phenomena of radioadaptation.

Ethylene Oxide 처리(處理)와 방사선조사(放射線照射) 살균(殺菌) 향신료(香辛料)의 관능적(官能的) 품질평가(品質評價) (Evaluation of Sensory Quality of Spices Treated with Ethylene Oxide and Ionizing Radiation)

  • 변명우;권중호;이재원;조한옥
    • 한국식품과학회지
    • /
    • 제18권6호
    • /
    • pp.427-430
    • /
    • 1986
  • 살균처리(殺菌處理) 방법(方法)(ethylene oxide, gamma irradiation)에 따른 5가지 향신료와 그들을 혼합스-프로 가공하여 순위법으로 관능적 품질을 평가한 결과는 다음과 같다. 시료 모두가 무처리구, 방사선 조사(照射)구, E.O.처리구의 순(順)으로 선호도(選好度)를 나타내었고, 분산분석 결과 5가지 향신료 각각이 1%(<0.01)와 5%(p<0.05)수준으로 유의차가 있었으며 혼합가공된 것은 유의차가 인정되지 않았다. 따라서 Duncan의 다범위검정 결과 5가지향신료 모두가 무처리와 방사선 조사구간(照射區間)에는 유의성이 없었고, E.O.처리구간에는 1%와 5%수준의 유의차가 인정되어 살균을 위한 방사선 조사(照射)는 향신료의 품질에 영향을 미치지 않으나 E.O.처리구는 품질저하를 가져 옮을 알 수 있고 이러한 결과는 각 시료의 주요 이화학적(理化學的) 특성(特性)의 변화(變化)와 일치하였다.

  • PDF

INDUCTION OF MITOCHONDRIAL DNA DELETION BY IONIZING RADIATION IN HUMAN LUNG FIBROBLAST IMR-90 CELLS

  • Eom, Hyeon-Soo;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Protection and Research
    • /
    • 제34권2호
    • /
    • pp.49-54
    • /
    • 2009
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with $^{137}Cs$ $\gamma$-rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and $H_2O_2$-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and $H_2O_2$-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

Proteome Analysis of Escherichia coli after High-dose Radiation

  • Lim, Sangyong;Lee, Misong;Joe, Minho;Song, Hyunpa;Kim, Dongho
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Since proteomics can be employed to compare changes in the expression levels of many proteins under particular genetic and environmental conditions, using mass spectrometry to establish radiation stimulon, we performed two-dimensional gel electrophoresis and identified E. coli proteins whose expressions are affected by high dose of ionizing radiation. After exposure to 3 kGy, it was found that 6 proteins involved in carbon and energy metabolism were reduced. Although 4 of 7 protein spots showing a significant increase in expression level were neither identified nor classified, uridine phosphorylase (Udp), superoxide dismutase (SodB), and thioredoxin-dependent thiol peroxidase (Bcp) were proven to be up-regulated after irradiation. This suggests that E. coli subjected to high doses of radiation (3 kGy) may operate a defense system that is able to detoxify reactive oxygen species and stimulate the salvage pathway of nucleotide synthesis to replenish damaged DNA.

Mathematical Description and Prognosis of Cell Recovery after Thermoradiation Action

  • Komarova, Ludmila N.;Kim, Jin-Kyu;Petin, Vladislav G.
    • 환경생물
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2008
  • A mathematical model for the synergistic interaction of physical and chemical environmental agents was suggested for quantitative prediction of irreversibly damaged cells after combined exposures. The model took into account the synergistic interaction of agents and was based on the supposition that additional effective damages responsible for the synergy are irreversible and originated from an interaction of ineffective sublesions. The experimental results regarding the irreversible component of radiation damage of diploid yeast cells simultaneous exposed to heat with ionizing radiation ($^{60}Co$) or UV light (254 nm) are presented. It was shown that the cell ability of the liquid holding recovery decreased with an increase in the temperature, at which the exposure was occurred. A good correspondence between experimental results and model prediction was demonstrated. The importance of the results obtained for the interpretation of the mechanism of synergistic interaction of various environmental factors is discussed.

Characteristics of Specific Absorption Rate (SAR) in Electromagnetic (EM) Dosimetry

  • Hwang, Sun-Tae;Choi, Kil-Oung
    • Journal of Radiation Protection and Research
    • /
    • 제25권2호
    • /
    • pp.109-114
    • /
    • 2000
  • The SI unit of specific absorption rate (SAR) in W/kg in the electromagnetic (EM) field as non-ionizing radiation is exactly same as the SI unit of absorbed dose rate in Gy/s in the ionizing radiation field. The SI unit of both physical quantities can be expressed in $[m^{\cdot}s^{-3}]$. Where, the unit of absorbed dose, Gy stands for Gray. In EM biological interactions, the SAR equations are derived and the characteristics of EM field energy absorption in terms of the SAR are discussed and described on the mathematical basis.

  • PDF