• Title/Summary/Keyword: ion-plating

Search Result 323, Processing Time 0.021 seconds

A STUDY ON METAL RELEASE OF TIN ION-PLATED STAINLESS STEEL ORTHODONTIC APPLIANCES (TiN 피막 처리된 스테인레스강 교정용 장치물의 금속 유리에 대한 연구)

  • KIM, Myung-Sook;Sung, Jae-Hyun;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.25 no.1 s.48
    • /
    • pp.43-54
    • /
    • 1995
  • This study was conducted to examine the metal release of TiN-plated stainless steel orthodontic appliances by constructing the simulated orthodontic appliances equivalent to maxillary half arch, by dividing into TiN-plated and TiN-nonplated Bloops and by dividing again these groups into welded and nonwelded groups. And then, the total quantity of metal release was obtained by measuring the amounts of both soluble and precipitated nickel and chromium after immersing in artificial saliva for 15 days. And then, the corrosion appearance of surface structure was observed by using SEM. The results of this study were summarized as follows. 1. The total amounts of released nickel and chromium showed that the TiN-plated group after welding(Group 1) was 25.46 ${\mu}g$, respectively, and 17.4 ${\mu}g$, while the TiN-nonplated group after welding(Group III) was 54.69 ${\mu}g$, respectively, and 85.27 ${\mu}g$. Then, the TiN-Plated group indicated less amounts of metal release(p<0.05). 2. The total amounts of the TiN-plated group without welding(Group II) was 0.05${\mu}g$ and 0.34${\mu}g$, respectively. Then, it was shown that the TiN-plated group without welding(Group II) indicated less metal release than that of the TiN-Plated group after welding(Group I)(p<0.01, p<0.05). 3. When observing their surface structure, there were a lot of precipitate and pitting corrosion in the groups with welding(Group I & III), when the TiN-plated group(Group I) showed lower level than the TiN-nonplated group(Group IIII). On the other hand, the groups without welding(Group II & IV) indicated a little of pitting corrosion. 4. In case of observation with the naked eyes, it was shown that there were significant disco1oration and corrosion in the groups with welding(Group I & III), while there was no any remarkable change in the groups without welding(Group II & IV).

  • PDF

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Fusarium moniliforme Detected in Seeds of Corn and Its Pathological Significance (옥수수 종자(種子)에서 검출(檢出)된 Fusarium moniliforme와 그 병리학적(病理學的) 중요성(重要性))

  • Kim, Wan-Gyu;Oh, In-Seok;Yu, Seung-Hun;Park, Jong-Seong
    • The Korean Journal of Mycology
    • /
    • v.12 no.3
    • /
    • pp.105-110
    • /
    • 1984
  • Seven seed samples of corn obtained from Kangweon Provincial Office of Rural Development, Kerea were tested for seed-borne fungi, and found that all the samples tested were infected with Fusarium moniliforme to an extent of $6.0{\sim}79.5%$. Severely infected seed samples showed poor germination on blotter. Seed component plating showed that the fungus present not only in tip caps, pericarps and endosperms, but also in embryos. Heavy infection of the fungus caused severe seed rot and seedling blight in soil, but the damage was not severe and many plants grew without any symptoms when the seeds with light infection were sown in soil. However the fungus was frequently detected from inside of the stems of healthy looking seedlings. The results indicate that the fungus transmit from seed to plant systemically. In inoculation experiments, the fungus produced stem rots on corn plants of 110 days old. The cultivar of Hwangok 3 was revealed more susceptible to the fungus than that of Suweon 19.

  • PDF