• Title/Summary/Keyword: ion-exchange resin

Search Result 367, Processing Time 0.022 seconds

Applicability Evaluation of the Wastewater Treatment System Using Magnetic Ion Exchange Resin in the Existing Wastewater Treatment Plant (기존하수처리장에서 자성체 이온교환수지를 이용한 하수처리공정 적용가능성 평가)

  • Park, Chan G.;Kim, Hee S.;Lee, Jung M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • The optimal removal efficiency to develop wastewater treatment system using the magnetic ion exchange resin. The secondary sedimentation effluent of wastewater in W wastewater treatment plant located in Gyeong-gi Province was used as the influent. To compare the sedimentation effluent reacted with the magnetic ion exchange resin to the influent, the concentrations of CODmm, TN, $NO{_3}^-$-N and TP were measured. The flux of the influent and HRT were set to 250 mL/min, 10 min, respectively, and BVTR has adjusted to 200, 150, 100. The removal efficiency of CODmn, TN, $NO{_3}^-$-N and TP in the 200 BVTR from 71%, 40.37%, 46.34%, 42.03%, 150 BVTR from 55.22%, 37.83%, 50.38% 41.6% and 100 BVTR from 74%, 59.15%, 79.94%, 79.16%, respectively. The results on 200 BVTR, 150 BVTR, 100 BVTR tests show that 100 BVTR is the optimal factor capable of the highest rate of rejection of the organic material.

An Approach for Reducing Carbon-14 Stack Emissions via Optimal Use of Ion Exchang Resins at CANDU Plant

  • Sohn, Wook;Chi, Jun-Ha;Kang, Duk-Won
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.445-455
    • /
    • 2003
  • Relatively high carbon-14 emissions, which occurred at PHWR Plant during 1998 and 1999, made the site staff to implement several operational improvements: 1) the frequency and volume of the moderator cover gas purging were reduced through increased $O_2$ additions to the cover gas, 2) the 'old' resin columns were not used during re-start of the reactor from outage, 3) efforts were made to minimize air ingress, 4) the maximum service time of moderator ion-exchange columns were restricted to about 80 days. Through the improvements, the carbon-14 emission from each PHWR reactor returned to the normal levels during the remainder of 1999 and during 2000. We carried out a special surveillance at W-1 and W-3 from September 2001 to August 2002 to properly evaluate ways to optimize the use of moderator ion exchange resins from a C-14 perspective. The surveillance showed that only data that provided an operational marker for deciding when to remove the IX-resin column is an observed increase in the C-14 stack emissions themselves. Also, it is shown that any increase over the rate of 0.4 Ci $month^{-1}$ for two consecutive weeks may be the indication for an ion-exchange resin column change, especially if the IX-resin column has been in service for more than 80 days.

  • PDF

A study on the optimization of Ion Exchange Resin operating conditions for removal of KCl from CKD extract (CKD 추출액내 KCl 제거를 위한 이온교환수지 조업조건 최적화 연구)

  • Jang, Younghee;Lee, Ye Hwan;Kim, Jiyu;Park, Il Gun;Lee, Ju-Yeol;Park, Byung Hyun;Kim, Seong-Cheol;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1088-1095
    • /
    • 2019
  • The CKD extract is wastewater from which KCl in CKD has been removed to reuse CKD as a cement raw material, and tried to reuse no extracts due to problems such as wastewater treatment facility expansion. As a result of removing KCl by the ion exchange method, the pH of the extract after ion exchange decreased from 12.7 to less than pH 2, and it was confirmed that H+ of the cation exchange resin was dissolved in the extract through ion exchange. In addition, the selectivity of the ion exchange was removed in the order of Ca2+, K+, it was determined that the increase in the contact time to remove the K+ ions. The batch system had a contact time of 6 times or more, compared to the continuous system, and showed 4 times of K+ removal efficiency and 7 times of Cl- removal efficiency. It was showed by analyzing the pH of the extract that more H+ of the cation exchange resin was extracted than OH- of anion exchange resin as the pH of the extract was changed.

Adsorption Properties for Heavy Metals Using Hybrid Son Exchange Fibers with Sulfonated PONF-g-Styrene by Radiation Polymerization and Cation Exchange Resin (방사선 중합 설폰화 PONF-g-스티렌과 양이온교환수지 복합 이온교환섬유의 중금속 흡착 특성)

  • Baek, Ki-Wan;Cho, In-Hee;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • In this study, Sulfonated PONF-g-styrene ion exchange fibers were synthesized by radiation induced graft copolymerization. And also, hybride ion exchange fibers, which was combined sulfonated PONF-g-styrene fibers and cationic ion exchange resin, were fabricated by hot melt adhesion method and then their adsorption properties were investigated. ion exchange capacity and water content of hybrid ion exchange fibers increased as compared with those of bead and ion exchange fiber. Their maximum values were 4.76 meq/g and 23.5%, respectively. Adsorption breakthrough time for mercury of hybrid ion exchange fiber was slower than those of bead resin and fibrous ion exchanger. It's value was 130 minutes. Their breakthrough time become short as increasing of pH, and concentration. The initial breakthrough time was observed before and after 10 minutes as increasing of concentration. The adsorption of hybrid ion exchange fibers for $Hg^{2+}\;Pb^{2+},\;Cd^{2+}$ among heavy metals in the mixed solution was observed before 20 min. And also, The adsorption for $Hg^{2+}$ among the heavy metals by hybride ion exchange fibers was observed.

Adsorption of Selenium in Industrial Wastewater Using Anion Exchange Resin and Activated Carbon (음이온교환수지와 활성탄을 이용한 산업 폐수 중 셀레늄의 흡착)

  • Han, Sang-Uk;Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1411-1416
    • /
    • 2009
  • Several adsorbents were tried to remove the selenium ions from industrial wastewater and the following ascending order of the adsorption performance for the selenium at pH 9 was observed: cation exchange resin < chelate resin < zeolite < brown marine algae < granular activated carbon < anion exchange resin. Initial concentration of selenium(146 mg/L) in industrial wastewater was reduced to 63 mg/L of selenium at pH 9 by neutralization process. The maximum uptake of Se calculated from the Langmuir isotherm with anion exchange resin was 0.091 mmol/g at pH 10 and that with granular activated carbon was 0.083 mmol/g at pH 6. The affinity coefficients of Se ion towards anion exchange resin and granular activated carbon were 3.263 L/mmol at pH 10 and 0.873 L/mmol at pH 6, respectively. The sorption performance of anion exchange resin at the low concentration of Se, namely, was much better than that of granular activated carbon. The Se ions from industrial wastewater throughout neutralization process and two steps of adsorption using anion exchange resin was removed to 97.7%.

Complexes of Alkaline Earth Metals with Dibasic Organic Acids in Aqueous, Ethanol-Water and Acetone-Water Solutions (알칼리토류 금속과 2 염기 유기산 사이의 착물)

  • Sang Up ChoI;Chang Hwan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.416-423
    • /
    • 1973
  • Formation of the complexes of alkaline earth metal ions with malonate and o-phthalate ions in aqueous, ethanol-water and acetone-water solutions (20% by volume) was studied at room temperature by the equilibrium ion exchange technique. This technique involved the measurements of distribution of radioactivity between cation exchange resin(Ion Exchange Resin CGC 241) and solution phases after the radioactive metal ions were equilibriated with the cation exchange resin in the presence of malonate or o-phthalate ions of varying concentrations. The pH of the solutions was controlled to 7.2~7.5, and the ionic strength of the solutions was kept at 0.10~0.11. The results of the present study indicated that the alkaline earth metal ions formed one-to-one complexes with the dibasic organic acids in all solvent systems examined. The present study showed that the relative stabilities of the complexes increased in the order: $Ba^{++}\;<\;Sr^{++}\;<\;Ca^{++}$ complexes. It was also observed that the relative tendency of the o-phthalate ion for the complex formation was somewhat greater than that of malonate ion in each solvent system. Furthermore, it was noted that the complexes were formed more readily in the mixed solvent than in the aqueous solution.

  • PDF

A study on the removal of As, Sb, Bi from the copper sulfate solutions by Ion exchange resin containing Aminophosphosphonic acid as a functional group (황산동용액(黃酸銅溶液)에서 Aminophosphosphonic acid 관능기를 가진 이온교환수지에 의한 As, Sb, Bi 제거(除去)에 관한 연구(硏究))

  • Ahn, Jae-Woo;Seo, Jae-Seong
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.50-57
    • /
    • 2012
  • A comparative study has been carried out on the removal of impurities such As, Sb, Bi from the copper sulfate solution by ion exchange resin containing aminophosphosphonic acid as functional group. The various parameters which affect the removal of impurities; such as the reaction temperature, the reaction time, the amount of ion-exchange resins, the concentration of sulfuric acid in electrolyte, were studied. The basic experimental results showed that about 88% of Sb & 94% of Bi can be adsorbed in these chelate resins and removed from the copper sulfate solutions but As was removed below 10% from the solutions. And the selective elution of Bi and Sb from the adsorbed ion exchange resin also can be achieved by $H_2SO_4$ or HCl solutions. The results also showed that 98.1% of Sb and 96.6% of Bi can be adsorbed from the copper sulfate solutions after 2 Bed-volume of continuous ion exchange column test.

Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

  • Lee, Kwang-Pill;Choi, Seong-Ho;Park, Yu-Chul;Bae, Zun-Ung;Lee, Mu-Sang;Lee, Sang-Hak;Chang, Hye-Yong;Kwon, Se-Mok;Kazuhiko Tanaka
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1324-1328
    • /
    • 2003
  • The simultaneous determination of anions ($SO_4 ^{2-},\;Cl^-,\;and\;NO_3^-$) and cations ($Na^+,\;NH^{4+},\;K^+,\;Mg^{2+},\;and\;Ca^{2+}$) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cationexchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the $H^+$-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

A STUDY ON ADSORPTION AND DESORPTION BEHAVIORS OF 14C FROM A MIXED BED RESIN

  • Park, Seung-Chul;Cho, Hang-Rae;Lee, Ji-Hoon;Yang, Ho-Yeon;Yang, O-Bong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.847-856
    • /
    • 2014
  • Spent resin waste containing a high concentration of $^{14}C$ radionuclide cannot be disposed of directly. A fundamental study on selective $^{14}C$ stripping, especially from the IRN-150 mixed bed resin, was carried out. In single ion-exchange equilibrium isotherm experiments, the ion adsorption capacity of the fresh resin for non-radioactive $HCO_3{^-}$ ion, as the chemical form of $^{14}C$, was evaluated as 11mg-C/g-resin. Adsorption affinity of anions to the resin was derived in order of $NO_3{^-}$ > $HCO_3{^-}{\geq}H_2PO_4{^-}$. Thus the competitive adsorption affinity of $NO_3{^-}$ ion in binary systems appeared far higher than that of $HCO_3{^-}$ or $H_2PO_4{^-}$, and the selective desorption of $HCO_3{^-}$ from the resin was very effective. On one hand, the affinity of $Co^{2+}$ and $Cs^+$ for the resin remained relatively higher than that of other cations in the same stripping solution. Desorption of $Cs^+$ was minimized when the summation of the metal ions in the spent resin and the other cations in solution was near saturation and the pH value was maintained above 4.5. Among the various solutions tested, from the view-point of the simple second waste process, $NH_4H_2PO_4$ solution was preferable for the stripping of $^{14}C$ from the spent resin.