• Title/Summary/Keyword: ion probe

Search Result 280, Processing Time 0.029 seconds

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향 자장이 인가된 용량 결합형 라디오 주파수 플라즈마의 특성 연구)

  • Lee, Ho-Jun;Yi, Dong-Yung;Tae, Heung-Sik;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1066-1068
    • /
    • 1999
  • Magnetic field is commonly used in low temperature processing plasmas in order to obtain high density. E $\times$ B magnetron or surface multipole configuration were most popular. However, the properties of capacitively coupled rf plasma confined by axially applied static magnetic fields have rarely been studied. In this paper, the effects of magnetic field on the characteristics of 13.56MHz/40KHz argon plasma will be reported. Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and omissive probe. At low pressure region ($\sim$10mTorr), ion current was increased by a factor of 3 - 4 due to reduction of diffusion loss of charged particles to the wall. It was observed that magnetic field induces large time variation of the plasma potential. The experimental result was compared with particle-in-cell simulation. It was also observed that electron temperature tend to decrease with increasing magnetic induction level for 40KHz discharge.

  • PDF

A Chromo- and Fluoroionophoric Thiaoxaaza-Macrocycle Functionalized with Nitrobenzofurazan Exhibiting Mercury(II) Selectivity

  • Lee, Ji-Eun;Lee, Shim-Sung;Choi, Kyu-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3707-3710
    • /
    • 2010
  • A chromo/fluorogenic $NO_2S_2$-macrocycle L functionalized with nitrobenzofurazan unit as a dual-signaling probe was synthesized and structurally characterized by single crystal X-ray analysis. In a cation-induced color change experiment, L exhibited excellent $Hg^{2+}$ ion selectivity by showing the color change from orange-red to yellow. However, this hypochromic shift by $Hg^{2+}$ was observed for the weaker coordinating anion system such as ${NO_3}^-$ and ${ClO_4}^-$ ions. The observed anion effect is due to the strong coordination of anions inhibits the bond formation between $Hg^{2+}$ and the macrocyclic tert-N atom, which is sensitive to induce the color change. In the fluorometric experiment, L showed chelate-enhanced fluorescence change effect only with $Hg^{2+}$ ion, together with a change from yellow to green emission. The sensing ability for $Hg^{2+}$ with the proposed chemosensor L is due to the stable complexation with 1:1 stoichiometry (metal-to-ligand).

NANO-STRUCTURAL AND NANO-CHEMICAL ANALYSIS OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.491-500
    • /
    • 2012
  • The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces (서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구)

  • Han, Ji-Hee;Han, Gue-Bum;Jang, Dong-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

이온 빔 스퍼터링 방법으로 제작한 Mo 박막의 특성조사

  • Jo, Sang-Hyeon;Kim, Hyo-Jin;Yun, Yeong-Mok;Lee, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.304-304
    • /
    • 2012
  • CIGS(CuInGaSe2) 태양전지의 후면전극(Back contact)으로 널리 사용되는 Mo 박막은 낮은 면저항, 높은 반사율, 광흡수층 Na-path 제공 등의 조건이 요구된다. 일반적으로 Mo 박막 제작은 DC 마그네트론 스퍼터링 방법이 가장 널리 사용되며, 제작조건에 따라 태양전지 효율에 강한 영향을 미치는 것으로 보고되고 있다. 본 연구에서는 DC 마그네트론 스퍼터링 시 기판에 이온빔(Ion-beam)을 동시 조사하는 이온 빔 스퍼터링 증착(Ion-beam sputter deposition)법으로 Mo 박막을 제작하였다. 제작된 박막의 전기적 및 광학적 특성은 4-point probe, UV-Vis-NIR spectrometer로 각각 조사하였으며 Na-path 제어를 위한 구조적 특성은 XRD, FE-SEM으로 분석하였다. 분석결과에 따르면 기존 DC 마그네트론 스퍼터링 방법보다 상대적으로 더 치밀한 구조와 높은 반사율을 가지는 박막이 제작됨을 알 수 있었다. Mo 박막의 최적조건은 DC power 300 W, Ion-gun power 50 W, Ar flow rate 20 sccm 였다.

  • PDF

A study on the effects of variously configured magnets on the characteristics of inductively coupled plasma (자장의 배열 및 형태가 유도결합형 플라즈마에 미치는 효과에 관한 연구)

  • 황순원;이영준;유지범;이재찬;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.4
    • /
    • pp.513-520
    • /
    • 1999
  • In this study, we investigated the effects of variously configured magnets on the characteristics of the plasmas to enhance plasma uniformity and density of an inductively coupled plasma source. As the magnets, Helmholtz type axial electromagnets and various multi-dipole magnets types around the chamber wall were used. To characterize the plasma as a function of the combination of the magnets and magnetic field strengths, ion density, electron temperature, and plasma potential were measured using an electrostatic probe along the chamber diameter for Ar plasmas. The measured maximum ion densities were $8$\times$10^{ 11}$$cm^{-3}$ with 600W inductive power and at 5mTorr of operational pressure and the uniformity of ion density was less than 5.9% at 2mTorr of operational pressure. The combination of an optimized multi-dipole magnet type and an axial electromagnet showed the lowest electron temperature (3eV) and plasma potential ($34V{p}$ )

  • PDF

Electron-Impact Ionization Mass Spectroscopic Studies of Acetylene and Mixed Acetylene-Ammonia Clusters as a Structure Probe

  • Sung Seen Choi;Kwang Woo Jung;Kyung Hoon Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.482-486
    • /
    • 1992
  • Ion-molecule reactions of acetylene and mixed acetylene-ammonia cluster ions are studied using an electron impact time-of-flight mass spectrometer. The present results clearly demonstrate that $(C_2H_2)_n^+$ cluster ion distribution represents a distinct magic number of n=3. The mass spectroscopic evidence for the enhanced structural stabilities of $[C_6H_4{\cdot}(NH_3)_m]^+$ (m=0-8) ions is also found along with the detection of mixed cluster $[(C_2H_2)_n{\cdot}(NH_3)_m]^+$ ions, which gives insight into the feasible structure of solvated ions. This is rationalized on the basis of the structural stability for acetylene clusters and the dissociation dynamics of the complex ion under the presence of solvent molecules.

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF

The Surface Modification and Low Cycle Fatigue Behavior of N+ion Implantated 7050Al Alloy (질소 이온 주입시킨 7050Al합금의 표면 미세구조 변화와 저주기 피로거동)

  • Lee, C.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.307-317
    • /
    • 1994
  • The surf ace microstructure modification by $N^+$ ion implantation into 7050Al alloy and its low cycle fatigue behavior were investigated. Ion implantation method is to physically implant accelerated ions to the surface of a substrate. High dose of nitrogen($5{\times}10^{17}ions/cm^2$) were implanted into 7050Al alloy using current density of accellerating voltage of 100KeV. The implanted layers were characterized by Electron Probe-Micro Analysis(EPMA), Auger Elecron Spectroscopy(AES), X-Ray Diffraction(XRD), X-Ray Photoelectron Spectroscopy(XPS), and Transmission Electron Microscopy(TEM). The experimental results were compared with computer simulation data. It was shown that AlN was formed to 4500 ${\AA}$ deep. The low cycle fatigue life of the $N^4$ion modified material was prolonged by about three times the unimplanted one. The improved low cycle fatigue life was attributed to the formation of AlN and the damaged region on the surface by $N^+$ ion implantation.

  • PDF