• 제목/요약/키워드: ion plating

검색결과 321건 처리시간 0.027초

SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구 (A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating)

  • 주윤곤;윤재홍;방위;장세굉;조동율;하성식
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.

아크이온플레이팅에 의한 Ti-Al-N코팅 엔드밀의 성능평가 (Performance Evaluation of Ti-Al-N coated Endmill by Arc ton Plating)

  • 이상용;강명창;김정석;김광호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.251-254
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining field. In this study, TiAIN single-layered and TiAIN/TiN double-layered coatings were applied to end-mill by an arc ion plating technique. Their performances were comparatively studied about cutting force, tool wear, tool life and surface roughness of workpiece under high speed cutting conditions. The TiAIN single-layer coated tool showed higher wear-resistance due to its higher hardness, while the TiAIN/TiN double-layer coated tool showed better performance for high metal removal, i.e., high fled per tooth condition due to its higher toughness. The surface roughness of the workpiece was not influenced by the wear amount of coated tools.

  • PDF

플렉시블 동장적층판 개발을 위한 동박표면처리에 관한 연구 (The study of Copper foil surface treatment for Flexible Copper Clad Laminate (FCCL))

  • 문원철;이창용;이재홍;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.24-26
    • /
    • 2006
  • The copper foil of 10fm of thickness was prepared, and the surface treatment on the copper foil was done by the method of the electrolytic plating in the acid solution with the sulfate ion as a purpose to remove the main element of the surface contaminant of copper variously. The structure on the surface of the copper foil in this study investigated AFM with SEM the changed phenomenon according to added plating time and current. The phenomenon of the structure's of the oxide on the surface of long plating time and high current growing was confirmed.

  • PDF

무전해도금에 의한 Ni-Tl-P 피막형성에 관한 연구 (A Study on Formation of Ni-Tl-P deposits by Electroless Plating)

  • 류일광;추현식
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.126-134
    • /
    • 2000
  • This study investigated the bath compositions and plating conditions and crystal structure used for achieving nickel-thallium-phosphorus deposits by means electroless plating. The electroless nickel-thallium-phosphorus deposits were achieved with a bath using sodium hypophosphite as the reducing agent and sodium citrate as the complexing agent. The depositing rate was 10.5mg.$cm^{2-1}$ .$hr^{-1 }$ from the optimistic bath composition, 0.1M nickel sulfate, 0.005M thallium sulfate, 0.2M sodium hypophosphite, and 0.05M sodium citrat and the recommended plating conditions, pH 5.5 and $90^{\circ}C$. The composition of alloy deposits determined by X-ray analysis (EDS) that the Thallium was increased with major increasing concentration of complexing agent and thallium ion in bath solution, it decreased according to the increasing concentrations of reduction agent in the bath solution, Bit Phosphorus showed a contrary to the thallium. It was observed from X-ray diffraction analysis, Scanning Electron Microscopy and Transmission Electron Microscopy. The crystalline structure of deposits was amorphous at the first deposited state but it was changed $Ni-T1-Ni_{5}$ $P_2$ polycrystalline when subjected to 1 hour heat treatment of more than $350^{\circ}C$. TEM observation demonstrated that the microstructure was identical to the result of the XRD at as deposited but it became $Ni-Tl-Ni_{5}$ $P_2$ polycrystalline when heated. And grain size was 10-50nm.

  • PDF

크롬 전착층의 표면광택에 미치는 펄스도금의 영향 (The Effects of Pulse Current on the Surface Appearance of Chromium Plating)

  • 한성호;권식철;여운관
    • 한국표면공학회지
    • /
    • 제14권4호
    • /
    • pp.215-220
    • /
    • 1981
  • The surface appearance of chromium electrodeposit was studied by employing a pulse curr-ent plating in self-regulating high speed (SRHS) bath containing 20 g/$\ell$, K2SiF6 7.5 g/$\ell$ SrSO4 and 250 g/$\ell$ CrO3. As the pulse frequency increased, the surface appearance changed suddenly from bright a-ppearance in a direct current plating condition to gray one in the range of pulse frequency less than about 20KHz. However the bright appearance is recovered as the pulse frequen-cy exceeded 20 KHz. This phenomena seemed to be related with the preferred orientation of electrodeposits, considering the relationship between the preferred orientation of elect-rodeposits and surface appearance in a SRHS bath. Direct current plating was also applied to both Sargent and SRHS bath and investigat-ion on surface appearance was extended to the high current density of 400 A/dm2. In a Sa-rgent bath, the increase in bath temperature was necessary for bright appearance as the current density was increased within 150 A/dm2, but bright region was shown in the cons-tant temperature of 70-75$^{\circ}C$ above the current density of 150A/dm2. On the other hand, two regions of surface brightness was found in a SRHS bath. One is region in the low temperature less than 25$^{\circ}C$ and the other in the moderate temperature range from 55$^{\circ}C$ to 65$^{\circ}C$.

  • PDF

TOXICITY IDENTIFICATION AND CONFIRMATION OF METAL PLATTING WASTEWATER

  • Kim, Hyo-Jin;Jo, Hun-Je;Park, Eun-Joo;Cho, Ki-Jong;Shin, Key-Il;Jung, Jin-Ho
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.16-20
    • /
    • 2007
  • Toxicity of metal plating wastewater was evaluated by using acute toxicity tests on Daphnia magna. To identify toxicants of metal plating wastewater, several manipulations such as solid phase extraction (SPE), ion exchange and graduated pH adjustment were used. The SPE test had no significant effect on baseline toxicity, suggesting absence of toxic non-polar organics in metal plating wastewater. However, anion exchange largely decreased the baseline toxicity by 88%, indicating the causative toxicants were inorganic anions. Considering high concentration of chromium in metal plating wastewater, it is thought the anion is Cr(VI) species. Graduated pH test showing independence of the toxicity on pH change strongly supports this assumption. However, as revealed by toxicity confirmation experiment, the initial toxicity of metal plating wastewater (24-h TU=435) was not explained only by Cr(VI) (24-h TU = 725 at $280\;mg\;L^{-1}$). Addition of nickel($29.5\;mg\;L^{-1}$) and copper ($26.5\;mg\;L^{-1}$) largely decreased the chromium toxicity up to 417 TU, indicating antagonistic interaction between heavy metals. This heavy metal interaction was successfully predicted by an equation of 24-h $TU\;=\;3.67\;{\times}\;\ln([Cu]\;+\;[Ni])\;+\;79.44$ at a fixed concentration of chromium.