• Title/Summary/Keyword: ion pairs

Search Result 76, Processing Time 0.029 seconds

Extraction Equilibria and Solvent Sublation for Determination of Ultra Trace Bi(Ⅲ), In(Ⅲ) and TI(Ⅲ) in Water Samples by Ion-Pairs of Metal-2-Naphthoate Complexes and Tetrabutylammonium Ion

  • Kim, Young-Sang;Choi, Yoon-seok;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1381-1391
    • /
    • 2002
  • The solvent sublation using ion pairs of metal-2-naphthoate(2-HNph) and tetrabutyl ammonium ($TBA^+$) ion has been studied for the concentration and determination of ultra trace Bi(III), In(III) and Tl(Ⅲ) ions in water samples. The partition coefficients ($K_p$) and the extraction percentages of 2-HNph and the ion pairs to methyl isobutyl ketone (MIBK) were obtained as basic data. After the ion pair $TBA^+$·M$(Nph)_4^-$ was formed in water samples, the analytes were concentrated by the solvent sublation and the elements were determined by GF-AAS. The pH of the sample solution, the amount of the ligand and counter ion added and stirring time were optimized for the efficient formation of the ion pair. The type and amount of optimum surfactant, bubbling time with nitrogen and the type of solvent were investigated for the solvent sublation as well. 10.0 mL of 0.1 M 2-HNph and 2.0 mL of 0.1 M $TBA^+$ were added to a 1.0 L sample solution at pH 5.0. After 2.0 mL of 0.2%(w/v) Triton X-100 was added, the ion pairs were extracted into 20.0 mL MIBK in a flotation cell by bubbling. The analytes were determined by a calibration curve method with measured absorbances in MIBK, and the recovery was 80-120%.

Determination of Zinc and Lead in Water Samples by Solvent Sublation Using Ion Pairing of Metal-Naphthoate Complexes and Tetra-n-butylammonium Ion

  • Kim, Yeong Sang;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.821-826
    • /
    • 2001
  • Solvent sublation has been studied for the separation and determination of trace Zn(Ⅱ) and Pb(Ⅱ) in water samples. A synergy producing method was utilized to improve the efficiency of extraction in the sublation using an ion-pair of metal-naphth oate {M-(Nph)3- } complexes and tetra-n-butylammonium (TBA+ ) ion. After the M-(Nph)3- complexes were formed by adding 1-naphthoic acid to the sample solution, tetra-n-butylammonium bromide was added in the solution to form the ion-pair. And sodium lauryl sulfate (SLS) was added to make the ion-pair hydrophobic. The ion-pairs of the metal complexes were floated and extracted into methylisobutyl ketone (MIBK) from the aqueous solution by bubbling with nitrogen gas in a flotation cell. Metal ions in MIBK solution were measured by graphite furnace-AAS. Experimental conditions were optimized as follow so. After the pH of a 1.0 L water sample was adjusted to 5.0, 6.0 mL of 0.1 M 1-HNph and 10 mL of 0.03 M TBA-bromide were added to the sample to form ion-pairs, and 2.0 mL of 0.2%(w/v) SLS was added to make the ion-pairs hydrophobic. The solution was bubbled with 30 mL/min N2 gas for 5 minutes in a flotation cell. Linear calibration curves were obtained for the determination of Zn(Ⅱ) and Pb(Ⅱ) in several water samples. Reproducible results of showing a relative standard deviation of < 10% and recoveries of 80-100% could be obtained.

Effect of Ion Pair on Thermostability of F1 Protease: Integration of Computational and Experimental Approaches

  • Rahman, Raja Noor Zaliha Raja Abd;Noor, Noor Dina Muhd;Ibrahim, Noor Azlina;Salleh, Abu Bakar;Basri, Mahiran
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.34-45
    • /
    • 2012
  • A thermophilic Bacillus stearothermophilus F1 produces an extremely thermostable serine protease. The F1 protease sequence was used to predict its three-dimensional (3D) structure to provide better insights into the relationship between the protein structure and biological function and to identify opportunities for protein engineering. The final model was evaluated to ensure its accuracy using three independent methods: Procheck, Verify3D, and Errat. The predicted 3D structure of F1 protease was compared with the crystal structure of serine proteases from mesophilic bacteria and archaea, and led to the identification of features that were related to protein stabilization. Higher thermostability correlated with an increased number of residues that were involved in ion pairs or networks of ion pairs. Therefore, the mutants W200R and D58S were designed using site-directed mutagenesis to investigate F1 protease stability. The effects of addition and disruption of ion pair networks on the activity and various stabilities of mutant F1 proteases were compared with those of the wild-type F1 protease.

Evaluation of Reverse Electrodialysis based on the Number of Cell Pairs and Stack Size Using Patterned Ion Exchange Membrane (패턴형 이온교환막을 이용한 스택의 셀 수 및 크기에 따른 역전기투석 성능 평가)

  • Dong-Gun Lee;Hanki Kim;Namjo Jeong;Young Sun Mok;Jiyeon Choi
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • Salinity gradient energy can be generated from a mixture of water streams with different salt concentrations by using reverse electrodialysis (RED). In this study, we evaluated the effect of stack size and number of cell pairs on the energy efficiency and specific energy of the RED process. Additionally, we studied the prementioned parameters to maximize the power density of RED. The performance of the RED stack which used a patterned ion exchange membrane, was evaluated as a function of stack size and feed flow rate. Moreover, it was noted that an increase in stack size increased the ion movement through the ion exchange membrane. Furthermore, an increase in feed flow rate led to a reduction in the concentration variation, resulting in an increase in OCV and power density. The energy efficiency and specific energy for 100 cells in the 10 × 10 cm2 stack were the highest at 12% and 0.05 kWh/m3, respectively, while the power density from 0.33 cm/s to 5 × 5 cm2 stack was the highest at 0.53 W/m2. The study showed that the RED performance can be improved by altering the size of the stack and the number of cell pairs, thereby positively affecting energy efficiency and specific energy.

Resolution of Molecular Species of the Triacylglycerol Containing Petroselinic Acid $(cis-C_{18:1{\omega}12)$ by Silver Ion-HPLC

  • Joh, Yong-Goe;Kim, Seong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2005
  • On the analysis of triacylglycerol (TG) from the kernels of Acanthopanax sessiliflorus by reversed phase-HPLC, it was separated into three main fractions of PN 44, 46 and 48, according to partition number (PN). On the contrary, it could be clearly classified into seven fractions of SMM, MMM, SMD, MMD, SDD, MDD and MDT by silver ion-HPLC by the number of double bond in the acyl chains of TG species. But resolution of so-called critical pairs of TG molecular species such as molecular pairs of $P_eLL$ $[C_{18:1{\omega}12}/(C_{18:2{\omega}6)2}]$ and OLL $[C_{18:1{\omega}9}/(C_{18:2{\omega}6)2}]$ and OOL $[(C_{18:1{\omega}9)2}/C_{18:2{\omega}6]$, and $P_eP_eL$ $[(C_{18:2{\omega}12)2}/C_{18:1{\omega}6]$ was not achieved $(P_e;$ petroselinic acid, L; linoleic acid, O; oleic acid). On the other hand, TG extracted from Aralia continentalis kernels were also fractionated into seven groups of SSM, SMM, MMM, SMD, MMD, SDD and MDD (S; saturated acid, M; monoenoic acid, D; dienoic acid) by silver ion-HPLC, although it's were classified into three groups of PN 44, 46 and 48 by reversed phase-HPLC. The fractions of SMM, MMM, MMD and MDD were divided into two subfractions, respectively; the fractions of SMM, MMM, MMD and MDD were resolved into the subfraction of $PP_e/P_e$ and POO (critical pairs from each other), that of $P_e/P_e/P_e$ and OOO, that of $P_e/P_e/L$ and OOL, and that of $P_e/L/L$ and OLL.

Solvent Effect on the Dynamics of Radical Ion Pair Separation

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Picosecond absorption spectroscopy has been employed in the study of the solvent dynamics of 1, 2, 4, 5-tetracyanobenzene/biphenyl derivative radical ion pairs, and the resulting rates of radical ion pair separation are faster in acetonitrile than in dichloromethane. In an effort to account quantitatively for such solvent effect on the rate of radical ion pair separation, an equation for the rate of radical ion pair separation is introduced, in which the rate depends exponentially on the electrostatic interaction energy in the radical ion pair. In our analysis of the types of electrostatic interaction energy based on the conducting spheres in dielectric continuum was chosen, and the rate equation employing this electrostatic energy provided information on the distance on the distance of radical ion pair separation and solvation energy of the radical ion pair, thereby providing quantitative explanation for the observed solvent effect on the rate of radical ion pair sepaaration.

  • PDF

Mercury ion detection technique using KPFM (KPFM을 통한 수은이온 검출 방법)

  • Park, Chanho;Jang, Kwewhan;Lee, Sangmyung;You, Juneseok;Na, Sungsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.358-360
    • /
    • 2014
  • For the several decades, various nanomaterials are broadly used in industry and research. With the growth of nanotechnology, the study of nanotoxicity is being accelerated. Particularly, mercury ion is widely used in real life. Because the mercury is representative high toxic material, it is highly recommended to detect the mercury ion. In previous reported work, thymine-thymine mismatches (T-T) capture mercury ion and create very stable base pair ($T-Hg^{2+}-T$). Here, we performed the high sensitive sensing method for direct label free detection of mercury ions and DNA binding using Kelvin Probe Force Microscope (KPFM). In this method, 30 base pairs of thymine (T-30) is used for mercury specific DNA binding ($T-Hg^{2+}-T$). KPFM is able to detect the mercury ion because there is difference between bare T-30 DNA and mercury mediated DNA ($T-Hg^{2+}-T$).

  • PDF

The vacancy diffusion and the formation of dislocation in graphene : Tight-binding molecular dynamics simulation

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.54-55
    • /
    • 2010
  • Vacancy defects in graphene can be created by electron or ion irradiation and those induce ripples which can change the electronic properties of graphene. Recently, the formation of defect structures such as vacancy defects and non-hexagonal rings has been reported in the high resolution transmission electron microscope (HR-TEM) of reduced graphene oxide [1]. In those HR-TEM images, it is noticed that the dislocations with pentagon-heptagon (5-7) pairs are formed and diffuses. Interestingly, it is also observed that two 5-7 pairs are separated and diffuse far away from each other. The separation of 5-7 pairs has been known to be due to their self-diffusion. However, from our tight-binding molecular dynamics simulation, it is found that the separation of 5-7 pairs is due to the diffusion of single vacancy defects and coalescence with 5-7 pairs. The diffusion and coalescence of single vacancy defects is too fast to be observed even in HR-TEM. We also implemented Van der Waals interaction in our tight-binding carbon model to describe correctly bi-layer and multi-layer graphene. The compressibility of graphite along c-axis in our tight-binding calculation is found to be in excellent agreement with experiment. We also discuss the difference between single layer and bi-layer graphene about vacancy diffusion and reconstruction.

  • PDF

Effect of True Partition Coefficient on the Determination of Extraction Coefficient of Ion-Pair Complexes (이온대 화합물의 참분배계수가 축출정수 결정에 미치는 영향)

  • 심창구
    • YAKHAK HOEJI
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Whether ($AB_{w}$) may be neglected against ($A_{w}^{+}$) in the calculation of the extraction coefficient of ion-pairs was criticized by both experiments and theoretical consideration, where ($AB_{w}$) and ($A_{w}^{+}$) mean the molar concentration of ion-pair AB and cation $A^{+}$ in the aqueous phase. Ion-pair complexes were partitioned between phosphate buffer (pH 7.4) and n-octanol. Tetrabutylammonium, isopropamide and methylene blue were selected as cations and benzoic acid, p-toluenesulfonic acid, salicylic acid and taurodeoxycholic acid were selected as counter ions (anions). As a result, conventional methods which assume no existence of ($AB_{w}$) were proven to lack generality. The equation proposed in my earlier report was confirmed to be valid as a general method.

  • PDF