• 제목/요약/키워드: ion detection

검색결과 668건 처리시간 0.024초

Copper(II) Selective PVC Membrane Electrodes Based on Schiff base 1,2-Bis (E-2-hydroxy benzylidene amino)anthracene-9,10-dione Complex as an Ionophore

  • Jeong, Eun-Seon;Lee, Hyo-Kyoung;Ahmed, Mohammad Shamsuddin;Seo, Hyung-Ran;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.401-405
    • /
    • 2010
  • The Schiff base 1,2-bis(E-2-hydroxy benzylidene amino)anthracene-9,10-dione has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the copper ($Cu^{2+}$) ion. Potentiometric investigations indicate high affinity of these receptors for copper ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, DOP: 66 mg and KTpClPB as additive were added 50 mol % relative to the ionophore in 1 ml THF. The proposed sensor's detection limit is $2.8{\times}10^{-7}$ M over pH 5 at room temperature (Nernstian slope 31.76 mV/dec.) with a response time of 15 seconds and showed good selectivity to copper ion over a number of interfering cations.

Optical Probe for Determination of Chromium(III) Ion in Aqueous Solution Based on Sol-Gel-Entrapped Lucigenin Chemiluminescence

  • Li, Ming;Kwak, Jun-Hee;Kim, Chang-Jin;Lee, Sang-Hak
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.103-108
    • /
    • 2003
  • A method to determine chromium(III) ion in aqueous solution by chemiluminescence method using a lucigenin entrapped silica sol-gel film has been studied. An optical probe for chromium(III) ion has been prepared by entrapping lucigenin into silica sol-gel film coated on a glass support by dip coating. The chromium(III) optical sensor is based on the catalytic effect of chromium(IIII) ion on the reaction between lucigenin and hydrogen peroxide in basic solutions. The effects of Nafion, DMF and Triton X-100 were investigated to find the optimum condition to minimize cracking and leaching from the probe. The effects of pH and concentrations of lucigenin and hydrogen peroxide on the chemiluminescence intensity were investigated. The chemiluminescence intensity was increased linearly with increasing chromium(III) concentration from $2.5{\times}10^{-4}$M to $8.0{\times}10^{-7}$M and the detection limit was $4.0{\times}10^{-7}$M.

  • PDF

모세관 전지영동법에 의한 굴뚝에서 포집된 NaOH 용액속의 염소이온의 측정 (Determinaton of Chloride Ion Captured into Strong NaOH Solution from Chimney by Capillary Electrophoresis)

  • 임인덕;성용익;김양선;임흥빈
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.327-333
    • /
    • 1999
  • Determination of chloride ion in concentrated NaOH solution by capillary electrophoresis has been studied. The analysis was performed by indirect UV absorption detection using chromate buffer at 254nm. The matrix effect of the sample has been observed so that the sensitivity in strong NaOH solutaion has decreased up to 10% of that in distilled water. The pH effect of the sample on the sensitivity of CE peaks has been investigated. The method for increasing the sensitivity have been investigated and the optimum pH and concentration of the buffer were 7.5 and 10mM, respectively. A cationic surfactant cetyltrimethylammonium bromide(CTAB), was added to a buffer solution in order to reverse the electroosmotic flow(EOF) in the capillary. This results in a short analysis time and better peak shapes. Using this optimum condition, the determination of chloride ion in real environmental sample has been performed, which is captured in strong NaOH absorbent prepared for absorbing gas from chimney. The standard addition method has been applied for the quantitative analysis, and it was obtained the good reproducibility.

  • PDF

Potentiometric Determination of L-Malate Using Ion-Selective Electrode in Flow Injection Analysis Syste

  • Kwun, In-Sook;Lee, Hye-Sung;Kim, Meera
    • Preventive Nutrition and Food Science
    • /
    • 제4권1호
    • /
    • pp.79-83
    • /
    • 1999
  • A potentiometric biosensor employing a CO3-2 ion-selective electrode(ISE) and malic enzyme immobilization in al flow injection analysis (FIA) system was constructed. Analytical parameters were optimized for L-malate determination . The CO3-2 -ISE-FIA system was composed of a pump, an injector, a malic enzyme (EC1.1.1.40) reactor, a CO3-2 ion-selective electrode, a pH/mV meter and a recorder. Cofactor NADP was also injected with substrate for theenzyme reaction into the system. Optimized analytical parameters for L-malate determination in the CO3-2 ISE-FIA system were as follows ; flow rate, 14.5ml/hr ; sample injection volume, 100ul; enzyme loading in the reactor, 20 units ; length of the enzyme reactor , 7 cm ; tubing length form the enzyme reactor to the detector as a geometric factor in FIA, 15 cm . The response time for measuring the entire L-malate concentration range (10-2 ~10-5 mol/L ; 4 injections )was <15minutes . In this CO3-2 -ISE-FIA system, the potential differences due to th eformation of CO3-2 by the reaction of malic enzyme on L-malate were correlated to L-malate concentration in the range of 10-2 ~10-5mol/L ; the detection limit was 10-5 mol/L. This potentionmetric CO3-2 ISE--FIA system was found to be useful for L-malate measurement.

  • PDF

Determination of Theophylline and its Metabolites in Human Urine by High-Performance Liquid Chromatography

  • Kim, Kyeong-Ho;Park, Young-Hwan;Park, Hyo-Kyung;Kim, Ho-Soon;Lee, Min-Hwa
    • Archives of Pharmacal Research
    • /
    • 제19권5호
    • /
    • pp.396-399
    • /
    • 1996
  • High-performance liquid chromatographic method with UV detecction was developed for the determination of theophylline and its metabolites in human urine using ${beta}$-hydroxyethyl theophylline$({beta} -HET)$ as an internal standard. For extraction of urine sample, quality control sample and xanthine-free blank urine were mixed with decylamine (ion-paring reagent) and ${beta}$-HET. After saturation with ammonium sulfate, the mixture was then extracted with organic solvent at pH values of 4.0-4.5. All separations were performed with ion-pair chromatography using decylamine as an ion-pairing reagent and 3mM sodium acetate buffered mobile phase (pH 4.0) containing 1% (v/v) acetonitrile and 0.75 mM decylamine. The detection limits of theophylline, 1, 3-DMU, 1-MU, 3-MX and 1-MX in human urine were 0.17, 0.17, 0.39, 0.19 and 0.19 ${\mu}g$/ml, based on a signal-to-noise ratios of 3.0. The mean intraday coefficients of variation (C.V.s) of each compound on nine replicates were lower than 2.0%, while mean interday C.V.s on three days were lower than 1.6%. All separations were finished within 40miutes.

  • PDF

Determination of Co(II) Ion as a 4-(2-Thiazolylazo)resorcinol or 5-Methyl-4-(2-thiazolylazo)resorcinol Chelate by Reversed-Phase Capillary High-Performance Liquid Chromatography

  • Chung, Yong-Soon;Chung, Won-Seog
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1781-1784
    • /
    • 2003
  • Determination of Co(II) ion as a 4-(2-thiazolylazo)resorcinol(TAR) or 5-methyl-4-(2-thiazolylazo)resorcinol(5MTAR) chelate was accomplished by reversed-phase capillary high-performance liquid chromatography (RP-Capillary-HPLC) using a Vydac $C_4$ column and MeCN-water mixture as mobile phase. The effect of change in pH and MeCN percentage of the mobile phase on the retention factor, k and peak intensity were evaluated. It was found that 30% MeCN (v/v) of pH 5.60 or 7.20 was adequate as mobile phase when TAR or 5MTAR is used. Detection limit (D.L., S/N=3) in each case was $2.0\;{\times}\;10^{-7}$M (11.8 ppb) and $3.0\;{\times}\;10^{-7}$ M (17.7 ppb). The Co(II) ion in mineral and waste water was determined with the optimum column and mobile phase.

Lead(II)-selective Polymeric Electrode Using a Schiff Base Complex of N,N'-Bis-thiophene-2-ylmethylene-ethane-1,2-diamine as an Ion Carrier

  • Jeong, Tae-Jun;Jeong, Dae-Cheol;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1219-1224
    • /
    • 2005
  • We prepared lead ion-selective PVC membranes that were based on N,N'-bis-thiophene-2-ylmethylene-ethane-1,2-diamine as a membrane carrier. The membrane electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-5}$ and 1.0 ${\times}$ $10^{-1}$ M with a Nernstian slope of 29.79 mV per decade, and its detection limit was 2.04 ${\times}$ $10^{-6}$ M at room temperature. The potentiometric response is independent of the pH of the solution in the pH range of 5-7. The proposed electrode revealed good selectivity and response for $Pb^{2+}$ over a wide variety of other metal ions in pH 5.0 buffer solutions, and there was good reproducibility of the base line on the subsequent measurements. The membrane electrode has a relatively fast response time, satisfactory reproducibility and a relatively long life time.

Development of a New Copper(II) Ion-selective Poly(vinyl chloride) Membrane Electrode Based on 2-Mercaptobenzoxazole

  • Akhond, Morteza;Ghaedi, Mehrorang;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.882-886
    • /
    • 2005
  • Copper(II) ion-selective PVC membrane electrode based on 2-mercaptobenzoxazole as a new ionophore and o-nitrophenyl octyl ether (o-NPOE) as plasticizer is proposed. This electrode revealed good selectivity for $Cu^{2+}$ over a wide variety of other metal ions. Effects of experimental parameters such as membrane composition, nature and amount of plasticizer, and concentration of internal solution on the potential response of $Cu^{2+}$ sensor were investigated. The electrode exhibits good response for $Cu^{2+}$ in a wide linear range of 5.0 ${\times}$ 10−.6-1.6 ${\times}$ $10^{-2}$ mol/L with a slope of 29.2 ${\pm}$ 2.0 mV/decade. The response time of the sensor is less than 10 s, and the detection limit is 2.0 ${\times}$ $10^{-6}$ mol/L. The electrode response was stable in pH range of 4-6. The lifetime of the electrode was about 2 months. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, and transition metal ions.