• Title/Summary/Keyword: ion composition

Search Result 796, Processing Time 0.03 seconds

Chemical and Bacteriological Water Qualify of the Sonakdong River (서낙동강 강수의 화학적${\cdot}$세균학적 수질)

  • KIM Yong Gwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.347-355
    • /
    • 1986
  • The Sonakdong river is very important water source not only for agricultural water of Kimhae field but also for fishery water. Recently the middle and lower areas of the river have the tendency to be heavily contaminated by domestic sewage and agricultural chemicals. Fifty six water samples were collected from 8 stations from July to December in 1985 for the experiment (Fig. 1). To evaluate the water quality, pH, water temperature, electrical conductivity, chloride ion, nutrients ($NO^{-}_{2}-N,\;NO^{-}_{3}-N,\;NH^{+}_{4}-N,\;PO^{3-}_{4}-P,\;SiO_2-Si$), total coliform, fecal coliform, and fecal streptococcus were determined. Range and mean value of the samples were as follows; pH $6.3{\sim}9.4$, 7.91; water temperature $6.1{\sim}34.8^{\circ}C,\;23.88^{\circ}C$; electrical conductivity (from St. A to G) $1.575{\times}10^2{\sim}30.50{\times}10^2{\mu}{\mho}/cm,\;6.57{\times}10^2{\mu}{\mho}/cm$; chloride ion $23.5{\sim}14,300mg/l$, 770.0mg/l; nitrite-nitrogen $0.007{\sim}0.110mg/l$, 0.053mg/l; nitrate-nitrogen $0.001{\sim}1.638mg/l$, 0.649 mg/l; ammonia-nitrogen $0.017{\sim}4.200mg/l$, 0.497mg/l; phosphate-phoshorus $0.011{\sim}0.281mg/l$, 0.086mg/l; and silicate-silicious $2.4{\sim}6.5mg/l$, 4.43mg/l. Electrical conductivity and chloride ion of the station F(Chomanpo) were $2.676{\times}10^2{\mu}{\Omega}cm$ and 123.99mg/l which were lower than those of others. Among the analyzed nutrients, silicate-silicious concentration was the highest through all the samples. The bacterial density of the samples ranged $36{\sim}110,000/100ml$ for total coliform, $15{\sim}46,000/100ml$ for fecal coliform and $3.6{\sim}15,000/100ml$ for fecal streptococcus. The range and the mean of the TC/FC ratio were $3.0{\sim}9.6$, 5.51 and those of the FC/FS ratio were $1.1{\sim}9.2$, 6.19, respectively. On the other hand, fecal coliform was not detected in about $78\%$ of the water samples examined. Composition of coliform was $52\%$ Escherichia coli group, $3\%$ Citrobacter freundii group, $13\%$ Enterobacter aerogenes group and $31\%$ others.

  • PDF

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

Identification of Fatty Acids in the Pulp Oils of Jujube and Their Compsitional Changes in the Ripening Period (대추의 과육지질(果肉脂質)에 존재(存在)하는 지방산(脂肪酸)의 동정(同定)과 숙성(熟成)에 따른 그 조성(組成)의 변화(變化))

  • Woo, Hyo-Kyeng;Kim, Seong-Jin;Park, Sung-Hea;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2001
  • In search for several fatty acid with unusual structure in vegetable oils, we have found that unknown peaks were shown on GLC in the analysis of fatty acids of the lipids from the pulp of ripened jujube (Zizypus jujuba var. inermis) fruits. These fatty acids were identified as a series of cis-monoenoic acids with ${\omega}-5$ double bond system such as $C_{14:1{\omega}5}$, $C_{16:1{\omega}5}$ and $C_{18:1{\omega}5}$, including ${\omega}-7$ fatty acid as $C_{16:1{\omega}7}$ and $C_{18:1{\omega}7}$, by GLC, solid-phase extraction silver ion-column chromatographic, GLC-mass spectrometric and IR techniques. First of all, total fatty acid methyl esters were resolved into saturated and branched fatty acid, monoenoic acid, dienoic acid, and trienoic acid fraction, respectively, with 100% dichloromethane (DCM), DCM/acetone (9:1, v/v) 100% acetone, and acetone/ acetonitrile (97:3, v/v) solvent system. Unknown fatty acids were included in the monoenoic fraction and were confirmed to have cis-configuration by IR. Picolinyl esters of monoenoic fatty acids gave distinct molecular ion peak and dominant diagnostic peaks, for example, m/z 317, 220 and 260 fragment for $cis-C_{14:1{\omega}5}$, m/z 345, m/z 248 and 288 fragment for $cis-C_{16:1{\omega}5}$ and m/z 373, m/z 276 and 316 fragment for $cis-C_{18:1{\omega}5}$. In this way the occurrence of $cis-C_{16:1{\omega}7}$ and $cis-C_{18:1{\omega}7}$ could be deduced from the appearance of prominent fragments as m/z 345, 220 and 260, and m/z 373, 248 and 280. Level of total ${\omega}-5$ fatty acids amounted to about 30% in the fatty acid composition with the predominance of $C_{16:1{\omega}5}$ $ (18.7{\sim}25.0%)$, in the semi-ripened and/or ripened samples collected in September 14 ($C_{16:1{\omega}5}$ ; 18.7%, $C_{14:1{\omega}5}$ ; 3.6% and $C_{18:1{\omega}5}$ ; 3.0%), September 22 ($C_{16:1{\omega}5}$ ; 25.0%, $C_{14:1{\omega}5}$ ; 1.4% and $C_{18:1{\omega}5}$ ; 2.6%), and October $7 (C_{16:1{\omega}5}$ ; 24.7%, $C_{14:1{\omega}5}$ ; 7.7% and $C_{18:1{\omega}5}$ ; 2.5%). However, the lipids extracted from unripened jujube in July and August contain these unusual fatty acids as low as negligible. It could be observed that the level of ${\omega}-5$ fatty acids in the pulps increased sharply with an elapse of ripening time of jujube fruits. Other monoenoic fatty acids with ${\omega}-7$ series, $C_{16:1{\omega}7}$ (palmitoleic acid) and $C_{18:1{\omega}7}$ (cis-vaccenic acid) could be detected. And in the lipids of the kernel and leaf of jujube, none of ${\omega}-5$ fatty acids could be detected.

Component Analysis of Suaeda asparagoides Extracts (나문재 추출물의 성분 분석)

  • Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • In the previous study, the anti-oxidant activity of oxtract/fraction of Sueada aspparagoides(SA) and the stability test for the cream containing SA extract were investigated respectively[1,2]. In this study, the components of SA extract were analyzed by TLC, HPLC, and LC/ESI-MS/MS, $^1H$-NMR. TLC chromatogram of ethyl acetate fraction of SA extract revealed 5 bands $(SA1{\sim}SA5)$. HPLC chromatogram of aglycone fractions obtained from deglycoylation reaction of ethyl acetate fraction showed 2 bands (SAA 2 and SAA 1), which were identified as quercetin (composition ratio, 16.88%) and kaempferol (83.12%) in the order of elution time. Among 5 bands of TLC chromatogram, 4 bands $(SA2{\sim}SA5)$ also were Identified as kaempferol-3-O-glucoside (SA 2), quercetin-3-O-glucoside (SA3), kaempferol-3-O-rutinoside (SA 4), quercetin-3-O-rutinoside (SA 5) by LC/ESI-MS/MSMS/MS. respectively. The spectrum generated for SAA 1 by LC/ESI-MS/MS in the negative ion mode also gave the ion corresponding to the deprotonated aglycone $[M-H]^-$ (285m/z), the $^1H$-NMR spectrum contained signals [${\delta}$ 6.19 (1H, d, J=1.8Hz, H-6), ${\delta}$ 6.44 (1H, d, J=1.8Hz, H-8), ${\delta}$ 6.92 (2H, d, J=9.0Hz, H-3', 5'), ${\delta}$ 8.04 (2H, d, J=9.0Hz, H-2', 6', thus SAA 1 was identified as kaempferol. SAA 2 yielded the deprotonated agycone ion $[M-H]^-$ (301m/z), $^1H$-NMR spectrum showed signals [${\delta}$ 6.20 (1H, d, J=2.0Hz, H-6), ${\delta}$ 6.42 (1H, d, J=2.0Hz, H-8), ${\delta}$ 6.90 (1H, d, J=8.6Hz, H-5'), ${\delta}$ 7.55 (1H, dd, J=8.6, 2.2Hz, H-6'), ${\delta}$ 7.69 (1H, d, J=2.2Hz, H-2', thus SAA 2 was Identified as quercetin. In conclusion, with the anti-oxidant activity and the stability test reported previously, component analysis of SA extracts could be applicable to new cosmeceuticals.

Body Composition Factor Comparisons of the Intracellular Fluid(ICW), Extracellular Fluid(ECW) and Cell Membrane at Acupuncture Points and Non-Acupuncture Points by Inducing Multiple Ionic Changes (생체이온 변화 유발 후 경혈과 비경혈에서의 생체 구조 성분 분석 및 비교를 통한 경혈 특이성 고찰)

  • Kim, Soo-Byeong;Chung, Kyung-Yul;Jeon, Mi-Seon;Shin, Tae-Min;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.31 no.2
    • /
    • pp.66-78
    • /
    • 2014
  • Objectives : The specificity of acupuncture point has been a highly controversial subject. Existing researches said that ion-distribution differences are observed on the acupuncture point. This study was conducted under the assumption that multiple ionic changes induced by muscle fatigue would be different between the acupuncture point with non-acupuncture point. Methods : To induce the identical fatigue, twenty subjects performed the knee extension/flexion exercise using the Biodex System 3. ST32 and ST33 as well as adjacent non-acupuncture points were selected. We measured blood lactate and analyzed the median frequency(MF) and peak torque. To obtain the information on the extracellular fluid(ECW), intracellular fluid(ICW) and cell membrane indirectly, we used the multi-frequency bioelectrical impedance analysis(MF-BIA) method. Results : MF, peak torque and blood lactate level of all measurement sites were gradually returned to normal. Re resistance of ST32 had a stronger response, but a non-acupuncture point adjacent to ST33 had a larger response up to 20 minutes post exercise. Ri resistances were similar for both acupoints and non-acupoints. The $C_m$ capacitance of ST32 had a stronger response after inducing fatigue, but ST33 had a smaller response than a non-acupuncture point adjacent to it. Conclusions : In comparison with before and after inducing fatigue, the specificity of acupuncture points was not clearly observed. Hence, we concluded that the body composition factors extraction method had the limitation as a method of finding the specificity of acupuncture points by inducing fatigue.

Chemical Composition, Nutritional Value, and Saponin Content in the Spring Sap of Acer mono (고로쇠나무 수액(樹液)의 화학적(化學的) 성분(成分), 영양가치(營養價置)와 사포닌 함유(含有) 여부(與否)에 관(關)한 연구(硏究))

  • Lee, Kyung Joon;Park, Jong Young;Park, Kwan Hwa;Park, Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.415-423
    • /
    • 1995
  • This study was conducted to analyze the chemical composition, nutritional contents, and saponin in the xylem sap of Acer mono Max. From Feb 25 to Mar 4, 1994, spring sap was collected by making holes with 1.7cm diameter on the trunk of trees in Mt. Baekwoon and Mt. Jiri. Sugars were quantified by HPIC, amino acids by amino acid analyzer, saponins by TLC, HPLC, and $^1H$ & $^{13}C$ NMR. Major component of the sap was sucrose at a concentration range of 0.68 to 2.01%. Following minor components were found: glucose at 0.03-0.11%, and fructose at 0.01-0.03% as sugars, lipid at 0.03%, threonine at 0.152%, lysine at 0.038%, arginine at 0.068% as amino acids, ash at 0.1%, Ca at 175ppm, Fe at 2ppm, P at 19ppm, K at 16ppm, Na at 31ppm as minerals, vitamin $B_1$ at 0.6ppm, vit. $B_2$ at 0.1ppm, and vit. C at 19ppm. A trace of phenolic compounds was found by TLC, while saponin commonly reported in high-quality ginseng roots was not found in maple sap. It is concluded that sap of Acer mono contains a good variety of natural compounds such as sugars, amino acids, Ca, Fe, and vitamins to serve as an excellent source of very natural and health-promoting drink.

  • PDF

Uronic Acid Composition, Block Structure and Some Related Properties of Alginic Acid (4) On Alginic Acid from Myagropsis myagroides Fensholt and Sargassum horneri C. Agardh (알긴산의 화학적 조성 및 그 물성에 관한 연구 (4) 외톨개모자반 및 괭생이모자반의 알긴산)

  • KIM Dong-Soo;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.124-130
    • /
    • 1985
  • In the previous papers (Kim and Park, 1984 a, b; 1985 a), we have reported on alginic acid from Ecklonia cava and Sargassum ringgoldianum. The seasonal variation in the composition of uronic acids and their block structures of alginic acid from Myagropsis myagroides Fensholt and Sargassum horneri C. Agardh (collected from Iee Chun village on the coast of Ilgwang-myon, Yansan-gun, Kyungnam, Korea, in the period of January to December in 1982) are investigated, and their relationship between the chemical composition and some related properties are discussed in this study. One year average contents of alginic acid were $25.2\%$ in the M. myagroides and $26.5\%$ in the S. horneri, and one year average values of M/G ratios were 1.97 in the M. myagroides and 1.38 in the S. horneri. The value of M. myagroides was largest in the period of December to April, and smallest in May to June and October to November. The value of S. horneri was largest in January and smallest in March to April. The proportion of alternating, M and G block in M. myagroides were $18.4\%,\;40.4\%$, and $41.2\%$, and those in S. horneri $9.8\%,\;33.3\%$ and $56.9\%$, respectively. The higher viscosity showed the value of 45.3 cP in M. myagroides (in November), and 26.0 cP in S. horneri(in January), respectively. Furthermore, the dependence on temperature of M. myagroides alginic acid was also larger in November, that of S. horneri alginic acid in June. Ion exchange ability of M. myagroides alginic acid was highest in November and the exchange amounts were $Pb^{2+}\;4.4,\;Cu^{2+}\;1.8,\;Zn^{2+}\;2.5$ and $Co^{2+}\;2.0\;meq/g$. Na-Alg., and the ability of S. horneri alginic acid was highest in June and the amounts were $Pb^{2+}\;4.5,\;Cu^{2+}\;2.2,\;Zn^{2+}\;2.4$ and $Co^{2+}\;2.1\;meq/g.$ Na-Alg. The affinity with metallic ions appeared higher in order of $Pb^{2+}>Cu^{2+}>Zn^{2+}>Co^{2+}$, and the exchange ability assumed to relate with the block ratio of uronic acid.

  • PDF

The Optimal Combination of Major Nutrients Computed by the Homés Systematic Variation Technique -III. Determination of the Optimal Combination of Σ Anion : Σ Cation and the Optimal Application Rate of Total Ions on the Various Grassland Soils (Homés방법(方法)에 의(依)한 다량요소(多量要素)의 적정(適正) 시비비율(施肥比率) 결정(決定)에 관한 연구 -III. 초지토양별(草地土壤別) 음(陰)이온 성분총량(成分總量) : 양(陽)이온 성분총량(成分總量) 적정(適正) 시비비율(施肥比率) 및 적정(適正) 총시비량(總施肥量))

  • Jung, Yeun-Kyu;Kim, Sang-Chul;Weinberger, P.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.178-187
    • /
    • 1982
  • This pot experiment was undertaken to find out the optimum fertilization ratios of total anions to total cations, ${\Sigma}A/{\Sigma}C$, and the optimum application rates of total macro-nutrients in various soil conditions. Soil samples were collected from uncultivated mountains and hills where grassland development was under consideration. 1. The optimum application ratios of ${\Sigma}A/{\Sigma}C$ and the optimum application rates of total macro-nutrients for the high yields of mixed grass-clover sward in various grassland soils were computed by the Hom$\acute{e}$s systematic variation techniqu.e. 2. With respect to the optimum application ratios of ${\Sigma}A/{\Sigma}C$ in fertilization in a mixed grass-clover sward, the grass yield and botanical composition were distinctly proportional to ${\Sigma}A$ wheras the regume yield and botanical composition were proportional to ${\Sigma}C$. 3. The optimum fertilization rates of total macro-nutrients for the high legume yields were depended upon ${\Sigma}A/{\Sigma}C$ ratios. These optimum rates were in proportional to ${\Sigma}C$ ratios and were inversely proportional to ${\Sigma}A$ ratios. 4. The efficiencies of ${\Sigma}A$ and ${\Sigma}C$ in relation to the grass and grass plus legume yields were highest with the low ratios of each other and the low fertilization rates of total macronutrients. The ${\Sigma}A$ effieiency in the legume yield tended to be similar to that of ${\Sigma}A$ related to the grass yield noted above except Daegu soil. The ${\Sigma}C$ efficiency, however, was proportional to the ${\Sigma}C$ ratio, although that was varied with the fertilization rates of total macro-nutrients and with the kinds of soils. 5. The yield of mixed forages, yield component, and botanical composition in a mixed sward were greatly influenced by the ${\Sigma}A/{\Sigma}C$ ratios, the fertilization rates of total macronutrients, and the interactions of ratio and rate noted above. In addition, these effects were generally different and opposite according to grass and legume.

  • PDF

Uptake of Heavy Metal Ions by Water Dropwort (Oenanthe stolonifera DC.) and Identification of Its Heavy Metal-Binding Protein (미나리의 중금속 흡수량 측정 및 중금속 결합단백질의 동정)

  • Park, Young-Il;Kim, Hee-Guen;Kim, Yoo-Young;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.494-500
    • /
    • 1996
  • Uptake of hen metal ions by water dropwort (Oenanthe stolonifera DC.) and its cadmium-binding protein were studied to probe for good method to remove heavy metal contaminants from environments. The plant was cultured in the culture medium (pH 7.0) containing the various concentrations of $Cd^{2+}$, $Cr^{3+}$ or $Pb^{2+}$, for 3 and 7 days. The residual heavy metals deposited in roots linearly increased as the metal ions concentration increased up to 17 ppm for $Cd^{2+}$, 20 ppm for $Cr^{3+}$ and 50 ppm for $Pb^{2+}$. Above these concentrations, the plant growth was inhibited and the uptake rates of the metal ions decreased. The heavy metals absorbed by the plant were mostly deposited in roots. In particular, the residual concentration of lead in roots was about four times higher than those of cadmium and chromium. When cultured in the medium containing 20 ppm of each metal ion, 80% of cadmium, 90% of cromium and 96% of lead were deposited in roots out of the total residual metal ions in the plant. These values correspond to 6.1 mg of cadmium, 5.2 mg of chromium and 23.6 mg of lead per one gram of roots tissue on a dry weight basis. A cadmium-binding protein was partially purified by extraction, gel filtration and DEAE-Cellulose chromatography from water dropworts that was grown in the medium containing 20 ppm $Cd^{2+}$. The purified protein was a single band on SDS- and non-denaturing- polyacrylamide gel electrophoresis. Its molecular mass was estimated to be ca. 5,000 dalton by gel filteration. Analysis of amino acid composition of the protein indicated that it had a typical amino acid composition of heavy metal-binding protein in that it contained 27% of acidic amino acids and 9.9% of cysteine. However, it is likely that the protein is a new plant metal-binding protein, since its amino acid composition is somewhat different from those of phytochelatins that have been known so far.

  • PDF

Uronic Acid Composition, Block Structure and Some Related Properties of Alginic Acid (3) On Alginic Acid Prepared from Sargassum ringgoldianum (알긴산의 화학적 조성 및 그 물성에 관한 연구 (3) 큰잎모자반의 알긴산)

  • KIM Dong-Soo;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 1985
  • In the previous papers (Kim and Park, 1984 a, b), we have reported on alginic acid from Ecklonia cava. The seasonal and portional variation in the composition of uronic acids and their block structures of alginic acid from Sargassum ringgoldianum (collected from Ichon-ri at the coast of Ilgwang-myon, Yangsan-gun, Kyongnam, Korea, in the period of January to December in 1982) are investigated, and their relationship between the chemical composition and some rotated properties is discussed in this study. The results are as follows: 1. One year average contents of alginic acid were $21.4\%$ in the stipe and $19.7\%$ in the frond, one-year average values of M/G ratios were 2.38 in the frond and 1.85 in the stipe. The value of frond was largest in the period of Jauuary to April and smallest in May and October to December. The value of stipe was largest January to April and smallest in May. In general, the proportions of M block in the both of frond and stipe were higher than those of G block. 2. The viscosity of frond alginic acid showed higher values of 31.1 cP in November, and lower (below 7.0 cP) in the stipe alginic acid. Furthermore, the dependence on temperature of frond alginic acid was also larger in November and others were lower. Ion exchange ability of frond alginic acid was highest in July and the exchange amounts were $Pb^{2+}\;5.2,\;Cu^{2+}\;3.1,\;Zn^{2+}\;1.7,\;Co^{2+}\;1.5$ meq/g, Na-Alg., and the ability of stipe alginic acid was highest in May and the amounts were $Pb^{2+}\;4.6,\;Cu^{2+}\;3.3,\;Zn^{2+}\;2.5,\;Co^{2+}\;1.4$ meq/g. Na-Alg.. The affinity with metallic ions appeared higher in order of $Pb^{2+}>Cu^{2+}>Zn^{2+}>Co^{2+}$, and the exchange ability assumed to relate with the block ratio of uronic acid.

  • PDF