• Title/Summary/Keyword: inward radial

Search Result 36, Processing Time 0.022 seconds

Chemical Differentiation of $C^{34}S$ and $N_2H^+$ in Dense Starless Cores

  • Kim, Shinyoung;Lee, Chang Won;Sohn, Jungjoo;Kim, Gwanjeong;Kim, Mi-Ryang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.75.2-75.2
    • /
    • 2014
  • CS molecule as an important tracer for studying inward motions in dense cores is known to be adsorbed onto dusts in cold (T~10K) dense cores, resulting in its significant depletion in the central region of the cores which may hamper a proper study of kinematics stage of star formation. In this study we choose five 'evolved' dense starless cores, L1544, L1552, L1689B, L694-2 and L1197, to investigate how depletion of CS molecule is significant and how the molecule differentiates depending on the evolutional status of the dense cores, by using a rare isotopomer C34S. We performed mapping observations in C34S (J=2-1) and N2H+ (J=1-0) with Nobeyama 45 m telescope, and compared $850{\mu}m$ continuum data as a reference of the density distribution of the dense cores. Our data confirm the claim that CS molecule generally depletes out in the central region in dense starless cores, while N2H+ keeps abundant as they get evolved. All of integrated intensity maps show 'semi-ring-like' depletion holes in CS, and all of abundance radial profiles show decrease toward center. The CS depletion and molecular chemical differentiation seems to depend on the evolutional status in dense cores. The evolved cores shows low abundance at both central and outer regions, implying that in the case of highly evolved cores CS freeze-out occurs over the most area of the cores.

  • PDF

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

A Molecular Dynamics Study on the Liquid-Glass-Crystalline Transition of Lennard-Jones System (한 Lennard-jones 시스템의 액체-유리-결정 전이에 관한 분자동역학 연구)

  • Chang, Hyeon-Gu;Lee, Jong-Gil;Kim, Sun-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.678-684
    • /
    • 1998
  • By means of constant- pressure molecular dynamics simulations, we studied the liquid- glass- crystalline transition of a system composed of Lennard- Jones particles with periodic boundary conditions. Atomic volume and enthalpy were calculated as functions of temperature during heating and cooling processes. The Wendt- Abraham ratio derived from radial distribution function and the angular distribution function characterizing short range order were analyzed to distinguish between liquid, glass and crystalline states. A liquid phase resulting from a slow heating of an initial fee crystal amorphized on fast quench, but it crystallized on slow quench. When slowly heated, the amorphous phase from fast quench crystallized into an fee structure. A system with free surface was shown to melt from the surface inward at a lower temperature than bulk system and to have a strong tendency for crystallization even during a fast quench from a liquid state.

  • PDF

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

Filament, the Universal Nersery of Stars: Progress Report on TRAO Survery of Nearby Filamentary Filamentary Molecular Clouds

  • Kim, ShinYoung;Chung, Eun Jung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Tafalla, Mario;Kim, Gwanjeong;Kim, Miryang;Soam, Archana;Gophinathan, Maheswar;Liu, Tie;Kim, Kyounghee;Kwon, Woojin;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2017
  • To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until the 2017A season, the real OTF observation time is ~760 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the six regions of molecular clouds (L1251 of Cepheus, Perseus West, Polaris South, BISTRO region of Serpens, California, and Orion B). The cube data for $^3CO$ and $C^{18}O$ lines were obtained for a total of 6 targets, 57 tiles, 676 maps, and $7.1deg^2$. And $N_2H^+$ and $HCO^+$ data were added for $2.2deg^2$ of dense regions. All OTF data were regridded to a cell size of 44 by 44 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about (0.1-0.2) K and $N_2H^+$ and $HCO^+$ data show about (0.07-0.2) K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. To identify filaments, we are using and testing programs (DisPerSE, Dendrogram, FIVE) and visual inspection for 3D image of cube data. A basic analysis of the physical and chemical properties of each filament is underway.

  • PDF

TRAO Multi-beam Legacy Survey of Nearby Filamentary Molecular Clouds : Progress Report

  • Kim, ShinYoung;Chung, Eun Jung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Tafalla, Mario;Kim, Gwanjeong;Kim, Miryang;Soam, Archana;Gophinathan, Maheswar;Liu, Tie;Kim, Kyounghee;Kwon, Woojin;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2017
  • To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until Feb. 2017, the real OTF observation time is 460 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the five regions of molecular clouds (L1251 of Cepheus, Perseus west, Polaris south, BISTRO region of Serpense, California, and Orion B). The maps of a total area of $7.38deg^2$ for both $^{13}CO$ and $C^{18}O$ lines and $2.19deg^2$ for both $N_2H^+$ and $HCO^+$ lines were obtained. All OTF data were regridded to a cell size of 22 by 22 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about 0.22 K and $N_2H^+$ and $HCO^+$ data show about 0.14 K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. We are refining the process for a massive amount of data and the data reduction and analysis are underway. This presentation introduces the overall progress from observations to data processing and the initial analysis results to date.

  • PDF