• 제목/요약/키워드: invertible operator

검색결과 38건 처리시간 0.021초

GENERALIZED JENSEN'S EQUATIONS IN A HILBERT MODULE

  • An, Jong Su;Lee, Jung Rye;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.135-148
    • /
    • 2007
  • We prove the stability of generalized Jensen's equations in a Hilbert module over a unital $C^*$-algebra. This is applied to show the stability of a projection, a unitary operator, a self-adjoint operator, a normal operator, and an invertible operator in a Hilbert module over a unital $C^*$-algebra.

  • PDF

PROPERTIES OF A κTH ROOT OF A HYPONORMAL OPERATOR

  • Ko, Eun-Gil
    • 대한수학회보
    • /
    • 제40권4호
    • /
    • pp.685-692
    • /
    • 2003
  • In this paper, we study some properties of (equation omitted) (defined below). In particular we show that an operator T $\in$(equation omitted) satisfying the translation invariant property is hyponormal and an invertible operator T $\in$ (equation omitted) and its inverse T$^{-1}$ have a common nontrivial invariant closed set. Also we study some cases which have nontrivial invariant subspaces for an operator in (equation omitted).

AN EXTENSION OF THE FUGLEDGE-PUTNAM THEOREM TO $\omega$-HYPONORMAL OPERATORS

  • Cha, Hyung Koo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.273-277
    • /
    • 2003
  • The Fuglede-Putnam Theorem is that if A and B are normal operators and X is an operator such that AX = XB, then $A^{\ast}= X. In this paper, we show that if A is $\omega$-hyponormal and $B^{\ast}$ is invertible $\omega$-hyponormal such that AX = XB for a Hilbert-Schmidt operator X, then $A^{\ast}X = XB^{\ast}$.

  • PDF

AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM TO p-QUASITHYPONORMAL OPERATORS

  • Lee, Mi-Young;Lee, Sang-Hun
    • 대한수학회보
    • /
    • 제35권2호
    • /
    • pp.319-324
    • /
    • 1998
  • The equation AX = BX implies $A^*X\;=\;B^X$ when A and B are normal (Fuglede-Putnam theorem). In this paper, the hypotheses on A and B can be relaxed by usin a Hilbert-Schmidt operator X: Let A be p-quasihyponormal and let $B^*$ be invertible p-quasihyponormal such that AX = XB for a Hilbert-Schmidt operator X and $|||A^*|^{1-p}||{\cdot}|||B^{-1}|^{1-p}||\;{\leq}\;1$.Then $A^*X\;=\;XB^*$.

  • PDF

SOME OPERATOR INEQUALITIES INVOLVING IMPROVED YOUNG AND HEINZ INEQUALITIES

  • Moazzen, Alireza
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권1호
    • /
    • pp.39-48
    • /
    • 2018
  • In this work, by applying the binomial expansion, some refinements of the Young and Heinz inequalities are proved. As an application, a determinant inequality for positive definite matrices is obtained. Also, some operator inequalities around the Young's inequality for semidefinite invertible matrices are proved.

RANK-PRESERVING OPERATORS OF NONNEGATIVE INTEGER MATRICES

  • SONG, SEOK-ZUN;KANG, KYUNG-TAE;JUN, YOUNG-BAE
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.671-683
    • /
    • 2005
  • The set of all $m\;{\times}\;n$ matrices with entries in $\mathbb{Z}_+$ is de­noted by $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$. We say that a linear operator T on $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ is a (U, V)-operator if there exist invertible matrices $U\;{\in}\; \mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ and $V\;{\in}\;\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ such that either T(X) = UXV for all X in $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$, or m = n and T(X) = $UX^{t}V$ for all X in $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$. In this paper we show that a linear operator T preserves the rank of matrices over the nonnegative integers if and only if T is a (U, V)­operator. We also obtain other characterizations of the linear operator that preserves rank of matrices over the nonnegative integers.

EXTREME PRESERVERS OF RANK INEQUALITIES OF BOOLEAN MATRIX SUMS

  • Song, Seok-Zun;Jun, Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.643-652
    • /
    • 2008
  • We construct the sets of Boolean matrix pairs, which are naturally occurred at the extreme cases for the Boolean rank inequalities relative to the sums and difference of two Boolean matrices or compared between their Boolean ranks and their real ranks. For these sets, we consider the linear operators that preserve them. We characterize those linear operators as T(X) = PXQ or $T(X)\;=\;PX^tQ$ with appropriate invertible Boolean matrices P and Q.

  • PDF

ISOMORPHISMS OF CERTAIN TRIDIAGONAL ALGEBRAS

  • Choi, Taeg-Young;Kim, Si-Ju
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제7권1호
    • /
    • pp.49-60
    • /
    • 2000
  • We will characterize isomorphisms from the adjoint of a certain tridiag-onal algebra $AlgL_{2n}$ onto $AlgL_{2n}$. In this paper the following are proved: A map $\Phi{\;}:{\;}(AlgL_{2n})^{*}{\;}{\longrightarrow}{\;}AlgL_{2n}$ is an isomorphism if and only if there exists an operator S in $AlgL_{2n}$ with all diagonal entries are 1 and an invertible backward diagonal operator B such that ${\Phi}(A){\;}={\;}SBAB^{-1}S^{-1}$.

  • PDF