• Title/Summary/Keyword: invertible

Search Result 159, Processing Time 0.025 seconds

A WEAKER NOTION OF THE FINITE FACTORIZATION PROPERTY

  • Henry Jiang;Shihan Kanungo;Hwisoo Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.313-329
    • /
    • 2024
  • An (additive) commutative monoid is called atomic if every given non-invertible element can be written as a sum of atoms (i.e., irreducible elements), in which case, such a sum is called a factorization of the given element. The number of atoms (counting repetitions) in the corresponding sum is called the length of the factorization. Following Geroldinger and Zhong, we say that an atomic monoid M is a length-finite factorization monoid if each b ∈ M has only finitely many factorizations of any prescribed length. An additive submonoid of ℝ≥0 is called a positive monoid. Factorizations in positive monoids have been actively studied in recent years. The main purpose of this paper is to give a better understanding of the non-unique factorization phenomenon in positive monoids through the lens of the length-finite factorization property. To do so, we identify a large class of positive monoids which satisfy the length-finite factorization property. Then we compare the length-finite factorization property to the bounded and the finite factorization properties, which are two properties that have been systematically investigated for more than thirty years.

A novel technique for removing the rigid body motion in interior BVP of plane elasticity

  • Y. Z. Chen
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2024
  • The aim of this paper is to remove the rigid body motion in the interior boundary value problem (BVP) of plane elasticity by solving the interior and exterior BVPs simultaneously. First, we formulate the interior and exterior BVPs simultaneously. The tractions applied on the contour in two problems are the same. After adding and subtracting the two boundary integral equations (BIEs), we will obtain a couple of BIEs. In the coupled BIEs, the properties of relevant integral operators are modified, and those integral operators are generally invertible. Finally, a unique solution for boundary displacement of interior region can be obtained.

ON THE SINGULAR LOCUS OF FOLIATIONS OVER ℙ2

  • Shi Xu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1067-1086
    • /
    • 2024
  • For a foliation 𝓕 of degree r over ℙ2, we can regard it as a maximal invertible sheaf N𝓕 of Ω2, which is represented by a section s ∈ H0(Ω2 (r+2)). The singular locus Sing𝓕 of 𝓕 is the zero dimensional subscheme Z(s) of ℙ2 defined by s. Campillo and Olivares have given some characterizations of the singular locus by using some cohomology groups. In this paper, we will give some different characterizations. For example, the singular locus of a foliation over ℙ2 can be characterized as the residual subscheme of r collinear points in a complete intersection of two curves of degree r + 1.

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

IDEMPOTENCE PRESERVING MAPS ON SPACES OF TRIANGULAR MATRICES

  • Sheng, Yu-Qiu;Zheng, Bao-Dong;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.17-33
    • /
    • 2007
  • Suppose F is an arbitrary field. Let ${\mid}F{\mid}$ be the number of the elements of F. Let $T_{n}(F)$ be the space of all $n{\times}n$ upper-triangular matrices over F. A map ${\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is said to preserve idempotence if $A-{\lambda}B$ is idempotent if and only if ${\Psi}(A)-{\lambda}{\Psi}(B)$ is idempotent for any $A,\;B\;{\in}\;T_{n}(F)$ and ${\lambda}\;{\in}\;F$. It is shown that: when the characteristic of F is not 2, ${\mid}F{\mid}\;>\;3$ and $n\;{\geq}\;3,\;{\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is a map preserving idempotence if and only if there exists an invertible matrix $P\;{\in}\;T_{n}(F)$ such that either ${\Phi}(A)\;=\;PAP^{-1}$ for every $A\;{\in}\;T_{n}(F)\;or\;{\Psi}(A)=PJA^{t}JP^{-1}$ for every $P\;{\in}\;T_{n}(F)$, where $J\;=\;{\sum}^{n}_{i-1}\;E_{i,n+1-i}\;and\;E_{ij}$ is the matrix with 1 in the (i,j)th entry and 0 elsewhere.

A Comparative Study of Covariance Matrix Estimators in High-Dimensional Data (고차원 데이터에서 공분산행렬의 추정에 대한 비교연구)

  • Lee, DongHyuk;Lee, Jae Won
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.747-758
    • /
    • 2013
  • The covariance matrix is important in multivariate statistical analysis and a sample covariance matrix is used as an estimator of the covariance matrix. High dimensional data has a larger dimension than the sample size; therefore, the sample covariance matrix may not be suitable since it is known to perform poorly and event not invertible. A number of covariance matrix estimators have been recently proposed with three different approaches of shrinkage, thresholding, and modified Cholesky decomposition. We compare the performance of these newly proposed estimators in various situations.

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF

A Study on Securities of Cryptosystems for Hierarchic Groups (위계집단에서 효율적인 암호계의 안전성에 관한 소고)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.605-610
    • /
    • 2013
  • A cryptography for enforcing hierarchic groups in a system where hierarchy is represented by a partially ordered set was introduced by Akl et al. But the key generation algorithm of Akl et al. is infeasible when there is a large number of users. To overcome this shortage, in 1985, MacKinnon et al. proposed a paper containing a condition which prevents cooperative attacks and optimizes the assignment. In 2005, Kim et al. proposed the key management systems for using one-way hash function, RSA algorithm, poset dimension and Clifford semigroup in the context of modern cryptography, the key management system using Clifford semigroup of imaginary quadratic non-maximal orders. We, in this paper, show that Kim et al. cryptosystem is insecure in some reasons and propose a revised cryptosystem.

INVOLUTION-PRESERVING MAPS WITHOUT THE LINEARITY ASSUMPTION AND ITS APPLICATION

  • Xu, Jin-Li;Cao, Chong-Guang;Wu, Hai-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.97-103
    • /
    • 2009
  • Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

  • PDF

Fingerprint Template Protection using Fuzzy Vault

  • Moon Dae-Sung;Lee Sung-Ju;Jung Seung-Hwan;Chung Yong-Wha;Moon Ki-Young
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.123-132
    • /
    • 2006
  • Biometric-based authentication can provide strong security guarantee about the identity of users. However, security of biometric data is particularly important as the compromise of the data will be permanent. To protect the biometric data, we need to store it in a non-invertible transformed version. Thus, even if the transformed version is compromised, the actual biometric data remains safe. In this paper, we propose an approach to protect finger-print templates by using the idea of the fuzzy vault. Fuzzy vault is a recently developed cryptographic construct to secure critical data with the fingerprint data in a way that only the authorized user can access the secret by providing the valid fingerprint. We modify the fuzzy vault to protect fingerprint templates and to perform fingerprint verification with the protected template at the same time. This is challenging because the fingerprint verification is performed in the domain of the protected form. Based on the experimental results, we confirm that the proposed approach can perform the fingerprint verification with the protected template.

  • PDF