• 제목/요약/키워드: inverted cup method

검색결과 3건 처리시간 0.02초

묻힌젖꼭지 교정 후 사용 가능한 간단한 젖꼭지 견인장치 (Simple Traction Device for Inverted Nipple Correction)

  • 이혜미;나영천
    • Archives of Plastic Surgery
    • /
    • 제33권6호
    • /
    • pp.789-791
    • /
    • 2006
  • Purpose: The inverted nipple presents many problems in both cosmetic and functional aspects. The histopathologic features of inverted nipple are that inverted nipple has less fibromuscular tissue than normal nipple, short lactiferous duct and dense fibrous tissue. Many papers have been reported for correction of the inverted nipple, however not many medical literatures has specifically described about traction method. Although traditional traction methods were using half of urine cup or lid of bottle, they were uncomfortable and incapable for wearing brassiere. Methods: We invented a simple and more natural method using a dome-shape plastic disposable lid of take-out cup. We applied new device for three patients after corrective surgery. Results: For long term follow up, all patients satisfied their postoperative status and they were comportable with the lids. Conclusion: This new method is very simple, comfortable, and effective method for traction. It also allows patients to wear the brassiere.

국내 시판 의류용 투습방수소재의 투습방수 성능평가 (The Evaluation of Water Vapor Transport and Waterproofness Properties of the Waterproof and Breathable Fabrics)

  • 심현섭
    • 한국지역사회생활과학회지
    • /
    • 제27권2호
    • /
    • pp.295-304
    • /
    • 2016
  • This study was conducted to evaluate and compare the waterproofness and water vapor transport properties of 30 waterproof and breathable textiles in the market. MVTR upright cup test with water, MVTR inverted cup test with potassium acetate, and sweating hot plate test method were used for measuring the breathability of fabric samples. The waterproofness of all fabric samples and evaporative resistance of garment ensembles made with 5 selected waterproof and breathable textiles out of 30 samples were tested. The results of this study were as follows. The base fabrics of the most samples were basic weave structure with either polyester or nylon fiber. The waterproofness was over $5000mmH_2O$ for all the samples except densely woven fabrics. The evaporative resistance of garments that were made out of 5 fabric samples with a range of low to high breathability ranged $39.9{\sim}56.7m^2{\cdot}P{\cdot}W^{-1}$. The data of the water vapor transport properties of fabric samples varied with different test methods. Overall the bicomponent film fabrics showed better breathability and less standard deviation regardless of test methods. It is expected the breathability data without the information of test conditions used for marketing would confuse the consumers and the apparel manufacturers.

투습도 측정방법에 따른 스포츠웨어용 투습직물의 투습특성 (Breathability of Breathable Fabrics for Sportswear according to Measuring Method)

  • 김현아;김승진
    • 한국의류산업학회지
    • /
    • 제19권4호
    • /
    • pp.493-503
    • /
    • 2017
  • This study investigated water vapor permeability of the 73 breathable fabrics for sports-wear according to the materials, finishing methods and fabric structural parameters. The water vapor permeability by KS K 0594 method of PET breathable fabric was superior than that of nylon one, in addition, water vapor permeability of coated or laminated breathable fabrics were higher than those of hot melt or dot laminated fabrics. The water vapor permeability of breathable fabric was dependent on the thickness, weight and density, which was consistent with measuring method. However, water vapor permeability according to materials and finishing method showed different results according to measuring method. The correlation coefficient of WVP of PET breathable fabrics between ISO and KS K measuring methods was -0.83 and the correlation coefficient of WVP of coated breathable fabrics was -0.72 and -0.71 for KS K and ASTM and -0.72 for KS K and ISO in hot melt laminated breathable fabrics. According to regression analysis, WVP of PET breathable fabric by both KSK and ISO measuring methods was highly dependent upon on the density and weight. In addition, WVP of hot melt laminated breathable fabric was highly dependent upon thickness, weight and density. Therefore, relevant measuring method for WVP of breathable fabrics has to be adopted to measure precise breathability.