• Title/Summary/Keyword: inversion problem

Search Result 232, Processing Time 0.025 seconds

Studies on the Resistivity Inversion -1. Automatic Interpretation of Electrical Resistivity Sounding Data- (비저항반전(比抵抗反轉)에 관한 연구(硏究) (1. 전기비저항수직탐사(電氣比抵抗垂直探査) 데이터의 자동해석(自動解析)))

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.14 no.3
    • /
    • pp.193-201
    • /
    • 1981
  • The problem of automatic inversion of apparent resistivity sounding curves resulting from horizontally layered earth models is solved using the least-squares technique. This method, which makes use of damped least-squares algorithm in conjunction with digital filtering technique, is found to be speedier and more accurate than the conventional curve-matching method. Four sounding curves were chosen to test the inversion scheme. The analysis of the theoretical sounding data associated with a three-layer model illustrates clear advantages over the conventional curve-matching method. The usefulness of the inversion method is also shown when applied to the actual field data. It was found that the best fit earth models coincide with the subsurface structures confirmed by drilling.

  • PDF

Task Synchronization Mechanism for Round Robin based Proportional Share Scheduling (라운드 로빈 기반 비례지분 스케줄링을 위한 동기화 기법)

  • Park, Hyeon-Hui;Yang, Seung-Min
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.4
    • /
    • pp.291-303
    • /
    • 2009
  • Round robin based proportional share scheduling(RRPS) defines weight which determines share for each task and allocates CPU resource to each task in proportional to its respective weight. RRPS uses fairness as the measure of performance and aims at high fairness of scheduling. However, researches for scheduling fairness problem due to synchronization among tasks have been rarely investigated. In this paper, we discuss that scheduling delay due to synchronization may result high unfairness in RRPS. We explain such a situation as weight inversion. We then propose weight inheritance protocol(WIP), a synchronization mechanism, that prevents weight inversion. We also show that WIP can reduce unfairness using fairness analysis and simulation.

An Efficient Implementation of Hybrid $l^1/l^2$ Norm IRLS Method as a Robust Inversion (강인한 역산으로서의 하이브리드 $l^1/l^2$ norm IRLS 방법의 효율적 구현기법)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • Least squares ($l^2$ norm) solutions of seismic inversion tend to be very sensitive to data points with large errors. The $l^1$ norm minimization gives more robust solutions, but usually with higher computational cost. Iteratively reweighted least squares (IRLS) method gives efficient approximate solutions of these $l^1$ norm problems. I propose an efficient implementation of the IRLS method for a hybrid $l^1/l^2$ minimization problem that behaves as $l^2$ norm fit for small residual and $l^1$ norm fit for large residuals. The proposed algorithm shows more robust characteristics to the decision of the threshold value than the l1 norm IRLS inversion does with respect to the threshold value to avoid singularity.

Differential Privacy Technology Resistant to the Model Inversion Attack in AI Environments (AI 환경에서 모델 전도 공격에 안전한 차분 프라이버시 기술)

  • Park, Cheollhee;Hong, Dowon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.589-598
    • /
    • 2019
  • The amount of digital data a is explosively growing, and these data have large potential values. Countries and companies are creating various added values from vast amounts of data, and are making a lot of investments in data analysis techniques. The privacy problem that occurs in data analysis is a major factor that hinders data utilization. Recently, as privacy violation attacks on neural network models have been proposed. researches on artificial neural network technology that preserves privacy is required. Therefore, various privacy preserving artificial neural network technologies have been studied in the field of differential privacy that ensures strict privacy. However, there are problems that the balance between the accuracy of the neural network model and the privacy budget is not appropriate. In this paper, we study differential privacy techniques that preserve the performance of a model within a given privacy budget and is resistant to model inversion attacks. Also, we analyze the resistance of model inversion attack according to privacy preservation strength.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

New Power Flow Calculation Using Improved Genetic Algorithm (개선된 유전 알고리즘을 이용한 새로운 전력조류계산)

  • Chae, Myung-Suck;Lee, Tae-Hyung;Shin, Joong-Rin;Im, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.43-51
    • /
    • 1999
  • The power flow calculations(PFc) are the most important and powerful tools in power systems engineering. The conventional power flow problem is solved generally with numerical methods such as Newton-Raphson(NR). The conventional numerical method generally have some convergency problem, which is sensitive to initial value, and numerical stability problem concerned with jacobian matrix inversion. This paper presents a new PFc algorithm based on the improved genetic algorithm (IGA) which can overcome the disadvantages mentioned above. The parameters of GA, with dynamical hierarchy of the coding system, are improved to make GA a practical algorithm in the problem of real system. Some case studies with test bus system also present to show the performance of proposed algorithm. The results of proposed algorithm are compared with the results of PFc obtained using a conventional NR method.

  • PDF

A Study on the Irregular Nesting Problem Using Genetic Algorithm and No Fit Polygon Methodology (유전 알고리즘과 No Fit Polygon법을 이용한 임의 형상 부재 최적배치 연구)

  • 유병항;김동준
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.77-82
    • /
    • 2004
  • The purpose of this study is to develop a nesting algorithm, using a genetic algorithm to optimize nesting order, and modified No Fit Polygon(NFP) methodology to place parts with the order generated from the previous genetic algorithm. Various genetic algorithm techniques, which have thus far been applied to the Travelling Salesman Problem, were tested. The partially mapped crossover method, the inversion method for mutation, the elitist strategy, and the linear scaling method of fitness value were selected to optimize the nesting order. A modified NFP methodology, with improved searching capability for non-convex polygon, was applied repeatedly to the placement of parts according to the order generated from previous genetic algorithm. Modified NFP, combined with the genetic algorithms that have been proven in TSP, were applied to the nesting problem. For two example cases, the combined nesting algorithm, proposed in this study, shows better results than that from previous studies.

Design and Implementation of a Temporary Priority Swapping Protocol for Solving Priority Inversion Problems in MicroC/OS-II Real-time Operating System (MicroC/OS-II 실시간 운영체제에서의 우선순위 역전현상 해결을 위한 일시적 우선순위 교환 프로토콜 설계 및 구현)

  • Jeon, Young-Sik;Kim, Byung-Kon;Heu, Shin
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.463-472
    • /
    • 2009
  • Real-time operating systems must have satisfying various conditions such as effective scheduling policies, minimized interrupt delay, resolved priority inversion problems, and its applications to be completed within desired deadline. The real-time operating systems, therefore, should be designed and developed to be optimal for these requirements. MicroC/OS-II, a kind of Real-time operating systems, uses the basic priority inheritance with a mutex to solve priority inversion problems. For the implementation of mutex, the kernel in an operating system should provide supports for numerous tasks with same priority. However, MicroC/OS-II does not provide this support for the numerous tasks of same priority. To solve this problem, MicroC/OS-II cannot but using priority reservation, which leads to the waste of unnecessary resources. In this study, we have dealt with new design a protocol, so called TPSP(Temporary Priority Swap Protocol), by an effective solution for above-mentioned problem, eventually enabling embedded systems with constrained resources environments to run applications.

Power Flow calculation Using Genetic Algorithms (유전 알고리즘을 이용한 전력조류계산)

  • Lee, Tae-Hyung;Chae, Myung-Suk;Im, Han-Suk;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.130-132
    • /
    • 1996
  • The power flow calculations(PFc) are the most important and powerful tools in power systems engineering. The conventional power now problem is solved generally with numerical methods such as Newton-Raphson. The conventional numerical method generally have some convergency problem, which is sensitive to initial value, and numerical stability problem concerned with matrix inversion. This paper presents a new power flow calculation algorithm based on the genetic algorithm(GA) which can overcome the disadvantages mentioned above. Some case studies with IEEE 6 bus system also presented to show the performance of proposed algorithm.

  • PDF

Axisymmetric deformation of thick circular plate in microelongated thermoelastic solid

  • Rajneesh Kumar;Aseem Miglani;Ravinder Kumar
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.231-245
    • /
    • 2024
  • In the present work, a microelogated thermoelastic model based on Lord-Shulman (1967) and Green-Lindsay (1972) theories of thermoelasticity has been constructed. The governing equations for the simulated model are converted into two-dimensional case and made dimensionless for further simplification. Laplace and Hankel transforms followed by eigen value approach has been employed to solve the problem. The use of eigen value approach hasthe advantage of finding the solution of governing equationsin matrix form notations. This approach is straight forward and convenient for numerical computation and avoids the complicate nature of the problem. The components of displacement,stress and temperature distribution are obtained in the transformed domain. Numerical inversion techniques have been used to invert the resulting quantities in the physical domain. Graphical representation of the resulting quantities for describing the effect of microelongation are presented. A special case is also deduced from the present investigation. The problem find application in many engineering problems like thick-walled pressure vesselsuch as a nuclear containment vessel, a cylindricalroller etc.