• Title/Summary/Keyword: inverse matrices

Search Result 119, Processing Time 0.023 seconds

Experiment study of structural random loading identification by the inverse pseudo excitation method

  • Guo, Xing-Lin;Li, Dong-Sheng
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.791-806
    • /
    • 2004
  • The inverse pseudo excitation method is used in the identification of random loadings. For structures subjected to stationary random excitations, the power spectral density matrices of such loadings are identified experimentally. The identification is based on the measured acceleration responses and the structural frequency response functions. Numerical simulation is used in the optimal selection of sensor locations. The proposed method has been successfully applied to the loading identification experiments of three structural models, two uniform steel cantilever beams and a four-story plastic glass frame, subjected to uncorrelated or partially correlated random excitations. The identified loadings agree quite well with actual excitations. It is proved that the proposed method is quite accurate and efficient in addition to its ability to alleviate the ill conditioning of the structural frequency response functions.

Inverse and Forward Force Transmission Analyses of Parallel Manipulators using Dimensionally Homogeneous Jacobian Matrices (유니트 일치된 자코비안 행렬을 이용한 병렬구조 로봇의 힘전달 해석)

  • Kim, Sung-Gaun;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1500-1505
    • /
    • 2003
  • In order to avoid the unit inconsistency problem in the conventional Jacobian matrix, previously we presented new formulation of a dimensionally homogeneous inverse Jacobian matrix for parallel manipulators with a planar mobile platform by using three end-effector points based on the velocity relationship [1]. This paper presents force relationships between joint forces and Cartesian forces at the three End-Effector points. The derived force relationships can then be used for analyses of the input/output force transmission. These analyses, forward and inverse force transmission analyses, depend on the singular values of the derived dimensionally homogeneous Jacobian matrix. Using the proposed force relationship, a numerical example is presented for actuator size design of a 3-RRR planar parallel manipulator.

  • PDF

Fused inverse regression with multi-dimensional responses

  • Cho, Youyoung;Han, Hyoseon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.267-279
    • /
    • 2021
  • A regression with multi-dimensional responses is quite common nowadays in the so-called big data era. In such regression, to relieve the curse of dimension due to high-dimension of responses, the dimension reduction of predictors is essential in analysis. Sufficient dimension reduction provides effective tools for the reduction, but there are few sufficient dimension reduction methodologies for multivariate regression. To fill this gap, we newly propose two fused slice-based inverse regression methods. The proposed approaches are robust to the numbers of clusters or slices and improve the estimation results over existing methods by fusing many kernel matrices. Numerical studies are presented and are compared with existing methods. Real data analysis confirms practical usefulness of the proposed methods.

System Realization by Using Inverse Discrete Fourier Transformation for Structural Dynamic Models

  • Kim, Hyeung Y.;W. B. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.289-294
    • /
    • 1998
  • The distributed-parameter structures expressed with the partial differential equations are considered as the infinite-dimensional dynamic system. For implementation of a controller in multivariate systems, it is necessary to derive the state-space reduced order model. By the eigensystem realization algorithm, we can yield tile subspace system with the Markov parameters derived from the measured frequency response function by the inverse discrete Fourier transformation. We also review the necessary conditions for the convergence of the approximation system and the error bounds in terms of the singular values of Markov-parameter matrices. To determine the natural frequencies and modal damping ratios, the modal coordinate transformation is applied to the realization system. The vibration test for a smart structure is performed to provide the records of frequency response functions used in the subspace system realization.

  • PDF

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

Jacket Matrix in Hyperbola (쌍곡선에서의 재킷 행렬)

  • Yang, Jae-Seung;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.15-24
    • /
    • 2015
  • Jacket matrices which are defined to be $m{\times}m$ matrices $J^{\dagger}=[J_{ik}^{-1}]^T$ over a Galois field F with the property $JJ^{\dagger}=mI_m$, $J^{\dagger}$ is the transpose matrix of element-wise inverse of J, i.e., $J^{\dagger}=[J_{ik}^{-1}]^T$, were introduced by Lee in 1984 and are used for Digital Signal Processing and Coding theory. This paper presents some square matrices $A_2$ which can be eigenvalue decomposed by Jacket matrices. Specially, $A_2$ and its extension $A_3$ can be used for modifying the properties of hyperbola and hyperboloid, respectively. Specially, when the hyperbola has n times transformation, the final matrices $A_2^n$ can be easily calculated by employing the EVD[7] of matrices $A_2$. The ideas that we will develop here have applications in computer graphics and used in many important numerical algorithms.

The description of wigner function and density matrix by computer tomograph (전산 시늉에 의한 위그너 함수와 밀도 행렬이 기술)

  • 강장원;조기현;윤선현
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.441-446
    • /
    • 2000
  • Wigner functions and density matrices are computer simulated for various quantum mechanical states of light. Wigner function and density matrices are evaluated by filtered back projection which includes inverse Radon transform from the distribution function of the photocurrents, which are calculated in the balanced homodyne detection scheme. The density matrix is also directly obtained by using the pattern function from the simulated phase independent photocurrent distribution function. ction.

  • PDF

EQUIVALENCE CLASSES OF MATRICES IN $GL_2(Q)$ AND $SL_2(Q)$

  • Darafsheh, M.R.;Larki, F. Nowroozi
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.433-446
    • /
    • 1999
  • Let G denote either of the groups $GL_2(q)$ or $SL_2(q)$. The mapping $theta$ sending a matrix to its transpose-inverse is an auto-mophism of G and therefore we can form the group $G^+$ = G.<$theta$>. In this paper conjugacy classes of elements in $G^+$ -G are found. These classes are closely related to the congruence classes of invert-ible matrices in G.

A Neural-like Algorithm to Compute One-Sided Inverse of III-Conditioned Matrices (III-Conditioned 정방행렬의 단측 역행렬 산출용 유사 인공신경망 알고리듬)

  • 문병수;양성운;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.321-323
    • /
    • 1998
  • 이 논문에서는 크기가 큰 III-Conditioned Matrices 정방행렬의 좌측 또는 우측 역행렬 계산시 계산상의 정확도를 향상시키는 알고리듬에 대하여 기술한다. 이 알고리듬은 대상 행렬의 행벡터들을 Input으로 하고 해당 Input 벡터가 몇번째 행 벡터인지를 나타내는 단위 벡터를 Target 벡터로 하며 초기 Weight 값으로 Pivoting을 겸한 Gauss소거법을 적용하여 얻은 역행렬을 사용하는 Single Layer 인공신경망에 적용하는 역전파 알고리듬과 흡사한 것이다. 각각의 Input 행 벡터에 대하여 역행렬의 열 벡터들이 점진적으로 직교가 되거나 평행이 되도록 근접시키므로써 모든 Input 행 벡터들이 열벡터들에 비교적 균일하게 직교 또는 평행이 되도록 학습시키는 알고리듬이다.

  • PDF

Inter-Conversion Matrix for Transcoding Block DCT and DWT-Based Compressed Images

  • Kim, Donggyun;Lim, Sanghee;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • This study derived the inter-conversion matrices, which can be used in heterogeneous image transcoding between the compressed images using different transforms, such as the $8{\times}8$ block discrete cosine transform (BDCT) and the one-level discrete wavelet transform (DWT). Basically, to obtain the one-level DWT coefficients from $8{\times}8$ BDCT, inverse BDCT should be performed followed by forward DWT, and vice versa. On the other hand, if the proposed interconversion approach is used, only one inter-conversion matrix multiplication makes the corresponding transcoding possible. Both theoretical and experimental analyses showed that the amount of computation of the proposed approach decreases over 20% when the inter-conversion matrices are used under specific conditions.