• Title/Summary/Keyword: inverse design

Search Result 768, Processing Time 0.03 seconds

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Inverse Heat Transfer Analysis Using Monte Carlo Method in Gas-Filled Micro-Domains Enclosed by Parallel Plates (몬테카를로 방법을 이용한 기체로 채워진 평판 사이의 마이크로 역열전달 해석)

  • Kim, Sun-Kyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.657-664
    • /
    • 2011
  • This study proposes an inverse method for estimating the boundary temperature in a gas-filled, onedimensional parallel domain enclosed by parallel plates. The distance between the plates is considered submicron to one mm. In the current method, it is assumed that the conditions of both heat flux and temperature are simultaneously applicable to one boundary, while no conditions are applicable to the other boundary The temperature on one of the boundaries should be inversely determined from the known temperature and heat flux on the other boundary. This study proposes a procedure for estimating the unknown boundary temperature through Monte Carlo simulation. Both the forward and inverse problems employ the Monte Carlo approach. The forward (direct) problem is solved by using the direct simulation Monte Carlo while the inverse solution is obtained by the simulated annealing.

Design of New Smoothing Mask of Color Inverse Halftoning (칼라 역 해프토닝을 위한 새로운 평활화 마스크의 설계)

  • 김종민;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.183-193
    • /
    • 1998
  • Color inverse halftoning is the transformation of a color-halftone image to a continuous-tone color image that is more natural in human vision. In this paper, we propose a new smoothing mask that can remove halftone patterns in channel effectively and we apply it to color inverse halftoning. The proposed smoothing mask can make channel images more smooth and natural in human vision than traditional ones. Its characteristic can be adapted automatically according to the various color halftone images. We analyze the result images in various aspects through experiments. Experimental results show that the mask is useful for color inverse halftoning. It can be applied to field of multimedia application, such as desktop publishing, color facsimile and digital library construction.

  • PDF

Design of an Intelligent Speed Control System for Marine Diesel Engines (선박용 디젤엔진을 위한 지능적인 속도제어시스템의 설계)

  • J.S.Ha;S.J.Oh
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.414-420
    • /
    • 1997
  • An intelligent speed control system for marine diesel engines is presented. The approach adopt¬ed is to use a conventional PID controller for normal operation and a feedforward controller for adaptive control. The feedforward controller is a neural network. The neural network is the inverse dynamics model of the plant, which is being trained on line. The parametric model of the diesel engine is represented in a linear second-order system, with a first-order combustion part and a revolution part each at a normal operating point. The time delay in the control of the com¬bustion part is approximated to the first-order system. The tuned PID parameters are set based on the model for normal operating point. To obtain the inverse dynamics of the diesel engine system, two neural networks are used, one for inverse, the other for forward dynamics. The former is posi¬tioned across the plant to learn its inverse dynamics during operation, and the latter is placed in series with the controlled plant. Simulation results are presented to illustrate the applicability of the proposed scheme to intelligent adaptive control of diesel engines.

  • PDF

Finite Element Inverse Analysis of an S-rail Forming Process with Direct Mesh Mapping Method and Crash Analysis considering Forming Effects (직접격자 사상법을 이용한 S-rail 성형공정의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, Seung-Ho;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.125-128
    • /
    • 2002
  • The automotive industry have made an effort to reduce the weight of vehicle structures with increased safety, while initial model of the final product does not contain any prehistoric effects in a design stave. It takes lots of time to calculate forming effects that have great influences on the energy absorption of structures. In this paper, finite element inverse analysis is adopted to calculate forming effects, such as thickness variation and effective plastic strain as well as an initial blank shape with small amount of computation time. Crash analysis can be directly performed after inverse analysis of the forming process without remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from the sliding constraint surface that is extracted from the die and punch set. Analysis results show that energy absorption of structures is increased with consideration of forming effects and finite element inverse analysis is usefully applicable to calculate forming erects of vehicle structures for the crash analysis.

  • PDF

Inverse Dynamic Modeling of a Stair-Climbing Robotic Platform with Flip Locomotion (회전과 뒤집기 방식의 계단등반 로봇의 역동역학 모델링)

  • Choi, Jae Neung;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.654-661
    • /
    • 2015
  • Stairs are the most popular obstacles in buildings and factories. To enlarge the application areas of a field robotic platform, stair-climbing is very important mission. One important reason why a stair-climbing is difficult is that stairs are various in sizes. To achieve autonomous climbing of various-sized stairs, dynamic modeling is essential. In this research, an inverse dynamic modeling is performed to enable an autonomous stair climbing. Stair-climbing robotic platform with flip locomotion, named FilpBot, is analyzed. The FlipBot platform has advantages of robust stair-climbing of various sizes with constant speed, but the autonomous operation is not yet capable. Based on external constraints and the postures of the robot, inverse dynamic models are derived. The models are switched by the constraints and postures to analyze the continuous motion during stair-climbing. The constraints are changed according to the stair size, therefore the analysis results are different each other. The results of the inverse dynamic modeling are going to be used in motor design and autonomous control of the robotic platform.

Adaptive Position Controller Design of Electro-hydraulic Actuator Using Approximate Model Inversion (근사적 모델 역변환을 활용한 전기-유압 액추에이터의 적응 위치 제어기 설계)

  • Lee, Kyeong Ha;Baek, Seung Guk;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • An electro-hydraulic actuator (EHA) is widely used in industrial motion systems and the increasing bandwidth of EHA position control is important issue. The model-inverse feedforward controller is known to extend the bandwidth of system. When the system has non-minimum phase (NMP) zeros, direct model inversion makes system unstable. To overcome this problem, an approximate model-inverse method is used. A representative approximate model inversion method is zero phase error tracking control (ZPETC). However, if zeros locate right half plane of z-plane, the approximate inverse model amplifies the high-frequency response. In this paper, to solve the problem of ZPETC, an adaptive model-inverse control is proposed. The adaptive algorithm updates feedforward term in real-time. The effectiveness of the proposed adaptive model-inverse position control strategy is verified by comparison with typical proportional-integral (PI) control and feedforward control by experiments. As a result, the proposed adaptive controller extends the bandwidth of EHA position control.

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.