• Title/Summary/Keyword: invasion assay

Search Result 226, Processing Time 0.023 seconds

ZNF217 is Overexpressed and Enhances Cell Migration and Invasion in Colorectal Carcinoma

  • Zhang, Zi-Chao;Zheng, Li-Qiang;Pan, Li-Jie;Guo, Jin-Xing;Yang, Guo-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2459-2463
    • /
    • 2015
  • Background: To investigate the expression and clinical significance of zinc finger protein 217 (ZNF217) in human colorectal carcinoma (CRC). Materials and Methods: The expression of ZNF217 in 60 CRC tissues and matched tumor adjacent tissues, collected between January 2013 and June 2014, was assessed immunohistochemically. The relationship between the expression of ZNF217 and clinicopathlogical features was analyzed by Pearson chi-square test. In addition, siRNA was used to down-regulate the expression of ZNF217 in CRC cells. The effects of ZNF217 for cell migration and invasion were measured by wound healing assay and transwell assay, respectively. Results: The expression level of ZNF217 was significantly higher in CRC tissues than in tumor adjacent tissues (p<0.05), positively correlating with tumor size, lymphatic metastasis and advanced TNM stage (p<0.05). Down-regulation of ZNF217 in CRC cells could significantly suppress cell migration and invasion. Conclusions: ZNF217 is overexpressed in colorectal carcinoma tissues and is associated with tumor malignant clinicopathological features. ZNF217 may promote CRC progression by inducing cell migration and invasion.

Cisplatin Combined with Metformin Inhibits Migration and Invasion of Human Nasopharyngeal Carcinoma Cells by Regulating E-cadherin and MMP-9

  • Sun, Xiao-Jin;Zhang, Pei;Li, Hai-Hui;Jiang, Zhi-Wen;Jiang, Chen-Chen;Liu, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4019-4023
    • /
    • 2014
  • Metformin has been shown to be useful in reducing insulin resistance by restoring sensitivity. Recent evidence suggests that metformin might also possess anti-tumour activity. This study aimed to investigate the effects of cisplatin combined with metformin on the proliferation, invasion and migration of HNE1/DDP human nasopharyngeal carcinoma (NPC) cells, and to provide a new target for treating metastasis. The MTT assay was used to assess viability of HNE1/DDP cells after exposure to different concentrations of 2, 5-diaminopyrimidine-4, 6-diol (DDP; 2, 4, 8, 16, and $32{\mu}mol{\cdot}L^{-1}$), metformin (5, 10, 15, 20, and $25{\mu}mol{\cdot}L^{-1}$), and $4{\mu}mol{\cdot}L^{-1}$ of DDP combined with metformin. Wound healing and transwell migration assays were performed to assess cell migration and invasion, and expression of E-cadherin and MMP-9 was detected using Western blotting. MTT assay results showed that DDP could inhibit the proliferation of HNE1/DDP cells in a time- and concentration-dependent manner, with an IC50 of $32.0{\mu}mol{\cdot}L^{-1}$ at 24 h (P < 0.05), whereas low concentrations of DDP had almost no inhibitory effects on cell invasion and migration. DDP combined with metformin significantly inhibited cell invasion and migration. In addition, genes related to migration and invasion, such as those of E-cadherin and MMP-9, showed differential expression in the NPC cell line HNE1/DDP. In the present study, with an increasing concentration of metformin, the expression of MMP-9 was downregulated whereas that of E-cadherin was significantly upregulated. Taken together, our results show that cisplatin combined with metformin has effects on proliferation, invasion, and migration of human NPC cells.

Anthocyanins from the Fruit of Vitis Coignetiae Pulliat Inhibit TNF-Augmented Cancer Proliferation, Migration, and Invasion in A549 Cells

  • Lu, Jing Nan;Panchanathan, Radha;Lee, Won Sup;Kim, Hye Jung;Kim, Dong Hoon;Choi, Yung Hyun;Kim, GonSup;Shin, Sung Chul;Hong, Soon Chan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.18 no.11
    • /
    • pp.2919-2923
    • /
    • 2017
  • Objective: Anthocyanins belong to a class of flavonoids, exhibiting antioxidant and anti-inflammatory actions have been reported to have anti-cancer effects. Here, we investigated whether anthocyanins can inhibit cancer cell proliferation, invasion, and angiogenesis in human lung cancer A549 cells, which are critically involved in cancer metastasis. Methods: We used anthocyanins from fruits of Vitis coignetiae Pulliat (AIMs) which has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. We have performed cell proliferation assays, cell invasion assay, gelatin zymography, wound healing assay and western blotting to examine whether anthocyanins can inhibit cancer cell proliferation, invasion, and angiogenesis in A549 cells. Result: AIMs did not inhibit cancer cell proliferation on A549 cells. Also, AIMs suppressed cancer migration, and invasion by supressing MMP-2 and MMP-9 expression. The Immuno-blotting results also revealed that AIMs suppressed the proteins involved in cancer proliferation (COX-2, C-myc, cyclin D1), migration and invasion (MMP-2, MMP-9), anti-apoptosis (XIAP, and c-IAP2), adhesion and angiogenesis (ICAM-1, VEGF). Conclusion: This study demonstrates that the anthocyanins isolated from fruits of Vitis coignetiae Pulliat inhibit cancer proliferation, cancer migration, and invasion that is involve in cancer-metastasis. This study provides evidence that AIMs might have anti-cancer effects on human lung cancer.

Identification of the Invasion Determinants of Salmonella typhimurium for Cultured HEp-2 and HeLa Cells

  • Park, Jeong-Uck;Joo, Woo-Hong
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.6-9
    • /
    • 2000
  • Salmonella typhimurium is a causative agent of the common worldwide disease, salmonellosis. To identify putative invasion genes involved in Samonella infections, a S. typhimurium cosmid library was constructed in noninvasive E. coli DJl. The invasion efficiencies of the cosmid library for cultured HEp-2 and HeLa cells were estimated by tissue-culture invasion assay. 2 out of 1,000 transductants, DHl(pSI623) and DHl(pSI511) were able to invade the cells. Compared to E. coli by DHl(pSI511) increased 25- and 33 fold, respectively. The invasion efficiencies of HeLa cells by DHl(pSI623) increased 31- and 35 fold, respectively. This illustrates that the cosmid clones, DHl(pSI623) and DHl(pSI511) could harbor the invasion determinants derived from genomic DNA of S. typhimurium 82/6915, conferring the invasive characters for the cells.

Identification of ANXA1 as a Lymphatic Metastasis and Poor Prognostic Factor in Pancreatic Ductal Adenocarcinoma

  • Liu, Qing-Hua;Shi, Mei-Lin;Bai, Jin;Zheng, Jun-Nian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2719-2724
    • /
    • 2015
  • Objective: The aim of this study was to investigate the clinical significance of annexin a1 (ANXA1) and provide molecular evidence to support that decreased ANXA1 expression could enhance cancer migration and invasion in pancreatic ductal adenocarcinoma (PDAC). Materials and Methods: Immunohistochemistry of a tissue microarray with 162 surgically resected PDAC specimens was performed to examine the expression of ANXA1. We also investigated the relationship between ANXA1 expression and clinicopathological factors and prognosis of PDAC patients. We further studied the role of ANXA1 in PDAC cell proliferation, migration and invasion by cell proliferation assay, migration assay and matrigel invasion assay with reduced ANXA1 expression by RNAi. Western blotting was used to detect matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression. We also detected MMP-9 enzyme activity by gelatin zymography. Results: Decreased expression of ANXA1 was significantly associated with poor differentiation, lymph node metastasis and advanced TNM stage of PDAC patients (p<0.05). Moreover, decreased expression of ANXA1 was correlated with poor survival (p<0.05). Furthermore, we found that ANXA1 knockdown inhibited cell proliferation, induced G1 phase cell cycle arrest, increased PDAC cell migration and invasion capacity compared with controls. In addition, Western blotting showed that ANXA1 knockdown increased the MMP-9 protein level and decreased TIMP-1 expression. Gelatin zymography showed that MMP-9 enzyme activity was also elevated. Conclusions: Negative ANXA1 expression is a most unfavorable prognostic factor for PDAC patients. ANXA1 knockdown inhibits cell proliferation by inducing G1 phase cell cycle arrest and increases migration and invasion of PDAC cells through up-regulating MMP-9 expression and activity, implying that ANXA1 may serve as a promising prognostic biomarker and therapeutic target for PDAC.

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

TIMP-2 Gene Transfer Via Adenovirus Inhibits the Invasion of Lung Cancer Cell (TIMP-2 유전자 재조합 아데노바이러스의 폐암세포 침윤 억제 효과)

  • Oh, Yeon-Mok;Lee, Jae-Ho;Yoo, Chul-Gyu;Chung, Hee-Soon;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.2
    • /
    • pp.189-197
    • /
    • 2000
  • Background : Tissue inhibitor of metalloproteinase is a natural inhibitor that counteracts pro teolytic enzymes essential to the invasion of cancer cell. Whether or not TIMP-2 gene transfer via adenovirus could inhibit the invasion of lung cancer cell iη vitro was evaluated for the future purpose of gene therapy against lung cancer. Methods : Recombinant adenovirus-TIMP-2(Ad-TIMP-2) was generated by homologous recombination after pACCMV-TIMP-2 and pJM17 were cotransfected into 293 cell by standard calcium phosphate coprecipitate method. Calu-6, one of the most invasive lung cancer cells, was transduced with Ad-TIMP-2 or Ad-$\beta$gal. Anchorage-independent growth and invasiveness were assessed by soft agar clonogenicity assay and invasion assay using two-chamber, well divided by matrigel. Results : Ad-TIMP-2 transduced calu-6 cells produced biologically active TIMP-2 more than 50 times more than parental calu-6. TIMP-2 gene transfer did not suppress the in vitro tumorigenicity. However, two chamber well assay revealed that Ad-TIMP-2 transduction reduced the invasiveness of calu-6 efficiently (12% compared with parental cell) even at low 10moi. Conclusion : Even though TIMP-2 gene transfer did not inhibit in vitro tumorigenicity, it did inhibit invasion of lung cancer cell in vitro. The inhibition of invasion by Ad-TIMP-2 may be a useful strategy for the treatment of lung cancer.

  • PDF

Tubeimoside-1 suppresses breast cancer metastasis through downregulation of CXCR4 chemokine receptor expression

  • Peng, Yaojin;Zhong, Yan;Li, Gao
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • To examine the effect of TBMS1on breast cancer metastasis, and investigate the potential mechanism by which Tubeimoside-1 (TBMS1) inhibits the CXCR4 expression in breast cancer cells. The expression of CXCR4 in breast cancer cell lines was determined by immunoblotting and real-time PCR. The effect of TBMS1 on NF-κB binding activity was evaluated by EMSA assay and ChIP analysis. Cell proliferation and invasion were analyzed by MTT assay and transwell invasion assay, respectively. The effect of TBMS1 on breast cancer metastasis was further evaluated in a metastasis model of nude mice. TBMS1 suppressed the expression of CXCR4 through inhibition of NF-κB binding activity. TBMS1 inhibited CXCL12-induced invasion in breast cancer cells, while ectopic expression of CXCR4 abolished the inhibitive activity of TBMS1. TBMS1 suppressed breast cancer metastasis in the metastatic model of nude mice. TBMS1 suppressed the CXCR4-mediated metastasis of breast cancer by inhibiting NF-κB binding activity.

Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid

  • Kim, Jin Young;Cho, Kyung Hwa;Lee, Hoi Young
    • Journal of dental hygiene science
    • /
    • v.18 no.3
    • /
    • pp.188-193
    • /
    • 2018
  • The aim of the current study was to demonstrate the potential therapeutic efficacy of resveratrol in oral cancer patients. Lysophosphatidic acid (LPA) intensifies cancer cell invasion and metastasis, whereas resveratrol, a natural polyphenolic compound, possesses antitumor activity, suppressing cell proliferation and progression in various cancer cell lines (ovarian, gastric, oral, pancreatic, colon, and prostate cancer cells). In addition, resveratrol has been identified as an inhibitor of LPA-induced proteolytic enzyme expression and ovarian cancer invasion. Furthermore, resveratrol was shown to inhibit oral cancer cell invasion by downregulating hypoxia-inducible factor $1{\alpha}$ and vascular endothelial growth factor expression. Recently, we demonstrated that LPA is important for the expression of transcription factors TWIST and SLUG during epithelial-mesenchymal transition (EMT) in oral squamous carcinoma cells. In this study, we treated serum-starved cultures of oral squamous carcinoma cell line YD-10B with resveratrol for 24 hours prior to stimulation with LPA. To identify an optimal resveratrol concentration that does not induce apoptosis in oral squamous carcinoma cells, we determined the toxicity of resveratrol in YD-10B cells by assessing their viability using the MTT assay. Another assay was performed using Matrigel-coated cell culture inserts to detect oral cancer cell invasion activity. Immunoblotting was applied for analyzing protein expression of SLUG, TWIST1, E-cadherin, and GAPDH. We demonstrated that resveratrol efficiently inhibited LPA-induced oral cancer cell EMT and invasion by downregulating SLUG and TWIST1 expression. Therefore, resveratrol may potentially reduce oral squamous carcinoma cell invasion and metastasis in oral cancer patients, improving their survival outcomes. In summary, we identified new targets for the development of therapies against oral cancer progression and characterized the therapeutic potential of resveratrol for the treatment of oral cancer patients.

THE EFFECT OF GENISTEIN IN ORAL SQUAMOUS CELL CARCINOMA WITH RESPECT TO THE ANGIOGENESIS AND BASEMENT MEMBRANE INVASION (구강편평세포암종에서 신생혈관화와 기저막침습에 미치는 제니스타인의 효과)

  • Kim, Yong-Hun;Yun, Pil-Young;Myoung, Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.434-439
    • /
    • 2002
  • Oral squamous cell carcinoma (OSCC) is one of the most common head and neck cancers. OSCC generally has a poor prognosis due to its tendency towards a local invasion and subsequent metastasis, which is mediated by multiple proteolytic enzymes and angiogenesis. Soy products contain high levels of isoflavonoids, including the tyrosine kinase inhibitor, genistein, which has been identified as a potent inhibitor of cell proliferation and in vitro angiogenesis. The purpose of this in vitro study is to evaluate the anti-cancer effect of genistein with respect to the angiogenesis and basement membrane invasion in OSCC. The highly invasive OSCC cell line, HSC-3 cells were cultured in the presence of $10{\mu}M$ genistein for 24h. To evaluate the effects of genistein on the invasiveness and the gelatinolytic activity, in vitro invasion assay and zymography were performed. In order to evaluate the effect on the VEGF and bFGF mRNA expression, RT-PCR and northern hybridization reaction, and chemiluminescence detection were applied. The in vitro invasion assay showed that the genistein treatment reduced the cellular invasion through the artificial basement membrane and significant difference between the control group and the genistein treated group was shown in MMP-2 activity. Especially, the 62 kDa activated form of MMP-2 in the control group was 1.8 times higher than that in the genistein treated group. The results of the northern blot analyses indicated that VEGF mRNA expression in the genistein treated group was significantly down regulated. This study showed that genistein inhibits angiogenesis and reduces basement membrane invasion in OSCC. It seems to support the possibility of genistein as an anti-cancer agent.