• Title/Summary/Keyword: invariant state

Search Result 185, Processing Time 0.023 seconds

Simulation studies to compare bayesian wavelet shrinkage methods in aggregated functional data

  • Alex Rodrigo dos Santos Sousa
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • The present work describes simulation studies to compare the performances in terms of averaged mean squared error of bayesian wavelet shrinkage methods in estimating component curves from aggregated functional data. Five bayesian methods available in the literature were considered to be compared in the studies: The shrinkage rule under logistic prior, shrinkage rule under beta prior, large posterior mode (LPM) method, amplitude-scale invariant Bayes estimator (ABE) and Bayesian adaptive multiresolution smoother (BAMS). The so called Donoho-Johnstone test functions, logit and SpaHet functions were considered as component functions and the scenarios were defined according to different values of sample size and signal to noise ratio in the datasets. It was observed that the signal to noise ratio of the data had impact on the performances of the methods. An application of the methodology and the results to the tecator dataset is also done.

The Simulator Design for the Analysis of Aircraft Longitudinal Dynamic Characteristics (항공기 세로 동특성 해석을 위한 시뮬레이터 설계)

  • Yoon, Sun-Ju
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • State-space method for the analysis of the dynamic characteristics of a body motion is set up as mathematical tool for the solution of differential equation by computer. Representation of a system is described as a simple form of matrix calculation and unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system etc. For the analysis of state-space method a complicated vector calculation is required, but this analysis can be simplified with the specific functions of a software package. Recently as the Graphical User Interface softwares are well-developed, then it is very simplified to execute the simulation of the dynamic characteristics for the state-space model with the interactive graphics treatment. The purpose of this study is to developed the simulator for the educational analysis of the dynamic characteristics of body motion, and for the analysis of the longitudinal dynamic characteristics of an aircraft that is primarily to design the simulator for the analysis of the transient response of an aircraft longitudinal stability.

  • PDF

Identification of Linear Model for Tandem Cold Mill Considering Interstand Interference (스탠드간 간섭현상을 고려한 연속 냉간압연기의 선형모델 규명)

  • Kim, In-Soo;Chang, Yu-Shin;Hwang, I-Cheol;Joo, Hyo-Nam;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.78-86
    • /
    • 2000
  • This study identified a linear time-invariant mathematical model of each stand of a five-stand tandem cold mill. Two model identification methods are applied to construct a linear model of each stand of the tandem cold mill. For the model identification the input-output data that have interstand interference property in tandem cold rolling are obtained from a nonlinear simulator of the tandem cold mill. And a linear model of each stand is identified with N4SD(numerical algorithms for subspace state space system identification) method based on a state-space model and Least Square algorithm based on a transfer function. Furthermore a modeling error of the tandem cold mill is quantitatively analyzed from a maximum singular value plot of error function between an identified nominal model and uncertain model. In conclusion the comparison of the output signals between the existing Taylor linearized model the identified linear model and the nonlinear model of the tandem cold mill shows the accuracy and the applicability of the proposed identified model.

  • PDF

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Robust $H_$ Control of Continuous and Discrete Time Descriptor Systems with Parameter Uncertainties (파라미터 불확실성을 가지는 연속/이산 특이시스템의 견실 $Η_2$ 제어)

  • 이종하;김종해;박홍배
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.251-263
    • /
    • 2003
  • This paper presents matrix inequality conditions for Η$_2$control and Η$_2$controller design method of linear time-invariant descriptor systems with parameter uncertainties in continuous and discrete time cases, respectively. First, the necessary and sufficient condition for Η$_2$control and Η$_2$ controller design method are expressed in terms of LMI(linear matrix inequality) with no equality constraints in continuous time case. Next, the sufficient condition for Hi control and Η$_2$controller design method are proposed by matrix inequality approach in discrete time case. Based on these conditions, we develop the robust Η$_2$controller design method for parameter uncertain descriptor systems and give a numerical example in each case.

Realistic Reliability Analysis of Reinforced Concrete Structures (철근콘크리트 구조물의 합리적인 신뢰성해석연구)

  • Oh, Byung Hwan;Koh, Chae Koon;Baik, Shin Won;Lee, Hyung Joon;Han, Seung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.121-133
    • /
    • 1993
  • Presented is a study on the establishment of a method of advanced reliability analysis for the realistic analysis and design of reinforced concrete(RC) structures. Considerable variabilities exist in concrete structures due to random nature of concrete materials and member dimensions. The present study analyzes first the uncertainties in concrete, reinforcements and member dimensions and then a method is proposed to determine the probability uncertainties of basic variables. The limit state equations are also proposed for the RC members with axial compression and bending and RC footings. The advanced invariant second-moment method is applied to analyze those structures. The present study provides an important base for realistic reliability analysis of RC structures.

  • PDF

An algebraic step size least mean fourth algorithm for acoustic communication channel estimation (음향 통신 채널 추정기를 이용한 대수학적 스텝크기 least mean fourth 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • The least-mean fourth (LMF) algorithm is well known for its fast convergence and low steady-state error especially in non-Gaussian noise environments. Recently, there has been increasing interest in the least mean square (LMS) algorithms with variable step size. It is because the variable step-size LMS algorithms have shown to outperform the conventional fixed step-size LMS in the various situations. In this paper, a variable step-size LMF algorithm is proposed, which adopts an algebraic optimal step size as a variable step size. It is expected that the proposed algorithm also outperforms the conventional fixed step-size LMF. The superiority of the proposed algorithm is confirmed by the simulations in the time invariant and time variant channels.

Multivariable Optimal Control of a Direct AC/AC Converter under Rotating dq Frames

  • Wan, Yun;Liu, Steven;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.419-428
    • /
    • 2013
  • The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter's independent currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation results.

Anti-sway Control of Crane System Using Hybrid Control Method (하이브리드 방식을 이용한 크레인의 앤티스웨이 제어)

  • Park, H.S.;Kim, H.S.;Park, J.H.;Lee, D.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • In crane control system, it is required that the travelling time of crane must be reduced as much as possible and there is no the swing of load at the end and starting points. In this paper, we present a hybrid control method which includes two control methods of the optimal regulator and the velocity pattern control in order to realize high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. A 1/10 sized model crane of the usual gantry cranes is made and used to show the applicability of the developed hybrid control method. The effectiveness of developed hybrid control method is proved by experimental results which show us good performance for anti-sway control comparing to conventional velocity pattern control. Practically, it is expected that the proposed control system will make an important contribution to the automatic crane control system of the industrial fields.

  • PDF