• Title/Summary/Keyword: intrinsic mode function

Search Result 38, Processing Time 0.027 seconds

Signal Reconstruction by Synchrosqueezed Wavelet Transform

  • Park, Minsu;Oh, Hee-Seok;Kim, Donghoh
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.159-172
    • /
    • 2015
  • This paper considers the problem of reconstructing an underlying signal from noisy data. This paper presents a reconstruction method based on synchrosqueezed wavelet transform recently developed for multiscale representation. Synchrosqueezed wavelet transform based on continuous wavelet transform is efficient to estimate the instantaneous frequency of each component that consist of a signal and to reconstruct components. However, an objective selection method for the optimal number of intrinsic mode type functions is required. The proposed method is obtained by coupling the synchrosqueezed wavelet transform with cross-validation scheme. Simulation studies and musical instrument sounds are used to compare the empirical performance of the proposed method with existing methods.

Analysis of Damped Vibration Signal using Empirical Mode Decomposition Method (경험 모드 분석법을 이용한 감쇠 진동 신호의 분석)

  • Lee, In-Jae;Lee, Jong-Min;Hwang, Yo-Ha;Huh, Kun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.699-704
    • /
    • 2004
  • Empirical mode decomposition(EMD) method has been recently proposed to analyze non-linear and non-stationary data. This method allows the decomposition of one-dimensional signals into intrinsic mode functions(IMFs) and is used to calculate a meaningful multi-component instantaneous frequency. In this paper, it is assumed that each mode of damped vibration signal could be well separated in the form of IMF by EMD. In this case, we can have a new powerful method to calculate natural frequencies and dampings from damped vibration signal which usually has multiple modes. This proposed method has been verified by both simulation and experiment. The result by EMD method which has used only output vibration data is almost identical to the result by FRF method which has used both input and output data, thereby proving usefulness and accuracy of the proposed method.

  • PDF

ECG Filtering using Empirical Mode Decomposition Method (EMD 방법을 이용한 ECG 신호 필터링)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2671-2676
    • /
    • 2009
  • Empirical mode decomposition (EMD) is new time-frequency analysis method to decompose the signal adaptively and efficiently. The key idea of EMD is to decompose the signal into a set of functions defined by the signal itself, named Intrinsic Mode Functions (IMFs), which preserve the inherent properties of the original signal. Since the decomposition is based on the local time scale of the signal, it is not only applicable to nonlinear and non-stationary processes but also useful in biomedical signals like electrocardiogram (ECG). Traditional low-pass filter uses fourier transform to analysis signal in frequency domain, but EMD is filtered to maintain signal properties in time domain. This paper performed signal decomposition and filtering for noisy ECGs using EMD method. The proposed method is presented and compared with traditional low-pass filter by two performance indices. Our results show effectiveness for enhancement of the noisy ECG waveforms.

The microstructure and mechanical performance of high strength alloy steel X2M

  • Manigandan, K.;Srivatsan, T.S.;Freborg, A.M.;Quick, T.;Sastry, S.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.283-295
    • /
    • 2014
  • In this paper, the microstructure, hardness, tensile deformation and fracture behavior of high strength alloy steel X2M is presented anddiscussed. The influence of both composition and processing on microstructure of the as-provided material and resultant influence of microstructure, as a function of orientation, on hardness, tensile properties and final fracture behavior is highlighted. The macroscopic mode and intrinsic microscopic features that result from fracture of the steel specimens machined from the two orientations, longitudinal and transverse is discussed. The intrinsic microscopic mechanisms governing quasi-static deformation and final fracture behavior of this high strength steel are outlined in light of the effects oftest specimen orientation, intrinsic microstructural effects and nature of loading.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

EMD-based output-only identification of mode shapes of linear structures

  • Ramezani, Soheil;Bahar, Omid
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.919-935
    • /
    • 2015
  • The Hilbert-Huang transform (HHT) consists of empirical mode decomposition (EMD) and Hilbert spectral analysis. EMD has been successfully applied for identification of mode shapes of structures based on input-output approaches. This paper aims to extend application of EMD for output-only identification of mode shapes of linear structures. In this regard, a new simple and efficient method based on band-pass filtering and EMD is proposed. Having rather accurate estimates of modal frequencies from measured responses, the proposed method is capable to extract the corresponding mode shapes. In order to evaluate the accuracy and performance of the proposed identification method, two case studies are considered. In the first case, the performance of the method is validated through the analysis of simulated responses obtained from an analytical structural model with known dynamical properties. The low-amplitude responses recorded from the UCLA Factor Building during the 2004 Parkfield earthquake are used in the second case to identify the first three mode shapes of the building in three different directions. The results demonstrate the remarkable ability of the proposed method in correct estimation of mode shapes of the linear structures based on rather accurate modal frequencies.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Bi-dimensional Empirical Mode Decomposition Algorithm Based on Particle Swarm-Fractal Interpolation

  • An, Feng-Ping;He, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5955-5977
    • /
    • 2018
  • Performance of the interpolation algorithm used in the technique of bi-dimensional empirical mode decomposition directly affects its popularization and application, so that the researchers pay more attention to the algorithm reasonable, accurate and fast. However, it has been a lack of an adaptive interpolation algorithm that is relatively satisfactory for the bi-dimensional empirical mode decomposition (BEMD) and is derived from the image characteristics. In view of this, this paper proposes an image interpolation algorithm based on the particle swarm and fractal. Its procedure includes: to analyze the given image by using the fractal brown function, to pick up the feature quantity from the image, and then to operate the adaptive image interpolation in terms of the obtained feature quantity. All parameters involved in the interpolation process are determined by using the particle swarm optimization algorithm. The presented interpolation algorithm can solve those problems of low efficiency and poor precision in the interpolation operation of bi-dimensional empirical mode decomposition and can also result in accurate and reliable bi-dimensional intrinsic modal functions with higher speed in the decomposition of the image. It lays the foundation for the further popularization and application of the bi-dimensional empirical mode decomposition algorithm.

Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : II. Correlation analysis (경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : II. 상관관계 분석)

  • Ahn, Si-Kweon;Choi, Wonyoung;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.207-215
    • /
    • 2016
  • In this study, it is analyzed how large scale climate variation has an effect on climate systems over Korea using correlation analysis between climate indices and Intrinsic Mode Functions (IMFs) of precipitation and temperature. For this purpose, the estimated IMFs of precipitation and temperature from the accompanying paper were used. Furthermore, cross correlation coefficients and lag time between climate indices and IMFs were calculated considering periodicities and tendencies. As results, more accurate correlation coefficients were obtained compared with those between climate indices and raw precipitation and temperature data. We found that the Korean climate is closely related with climate variations of $El-Ni{\tilde{n}}o$ in terms of periodicity and its tendency is followed with increasing sea surface temperature due to climate change.

A Frequency Domain Analysis of Corneal Deformation by Air Puff (Air puff에 의한 각막 변형의 주파수 영역 분석)

  • Hwang, Ho-Sik;Lee, Byeong Ha;Lee, Chang Su
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.240-247
    • /
    • 2014
  • Intraocular pressure is measured after a cornea air puff by observing biomechanical properties such as thickness or displacement of the cornea. In this paper, we deal with a frequency domain analysis of corneal deformation in the air puff tonometry that is used to diagnose glaucoma or lasik. We distinguish the patient from the normal by measuring the oscillation frequency in the neighborhood of the central cornea section. A binary image was obtained from the video images, and cornea vertical oscillation profile was extracted from the difference between the vertical displacement data and the curve fitting. In terms of Fourier transform, a vibration frequency of 479.2Hz for the patient was obtained as well as more higher 702.8Hz for the normal due to stiffness. Hilbert-Huang transform's empirical mode decomposition generally describes local, nonlinear, and nonstationary data. After the data were decomposed into intrinsic mode functions, a spectrum and power were analysed. Finally, we confirm that the patient has 6 times more higher power ratio for the specific intrinsic mode function between the patient and the normal.