• 제목/요약/키워드: intrinsic conditional autoregressive model

검색결과 3건 처리시간 0.013초

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea

  • Kim, Yun Jeong;Park, Man Sik;Lee, Eunil;Choi, Jae Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.361-367
    • /
    • 2016
  • We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in $R^2$ from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

시공간 분석을 이용한 외래 의료이용의 지역적 차이 분석 (Regional Disparity of Ambulatory Health Care Utilization)

  • 신호성;이수형
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.138-150
    • /
    • 2012
  • 본 연구는 시공간분석을 이용하여 주요 만성질환인 고혈압, 당뇨병, 관절증과 총의료이용에 있어 지역별 외래의료이용 차이를 살펴보았다. 분석자료는 보건복지부와 한국보건사회연구원에서 발간하는 1996, 1999, 2002, 2005, 2008년 환자조사 자료를 이용하였으며 분석방법으로는 베이지안 계층적 시공간모형(bayesian hierarchial spatio-temporal model)을 이용하였다. 이때 지역의 공간적 상관성은 convolution CAR 모형을, 시간적 상관성은 Ornstein-Uhlenbeck 방법을 적용하여 분석하였다. 분석결과 질환별로 의료이용에 있어 지역적 차이가 존재하였다. 총의료 이용의 경우 시 군지역보다 대도시인 구지역에서 높은 상대위험비를 보인반면, 만성질환인 고혈압, 당뇨병, 관절증은 총의료이용과는 달리 강원도, 충청남북도, 전라남북도, 제주도 등 농어촌 지역에서 전국평균보다 높은 의료이용(상대위험비)을 보였다. 특히 고혈압은 부산경남 해안가 지역과 강원, 경기, 경북, 충청남도, 전북 등에서 높은 의료이용을 보였고, 관절증은 경기, 강원 일부와 충북, 충남, 전북, 전남, 경북, 경남지역 등에서, 당뇨병은 경기, 서울, 부산, 전라남북, 충청일부 지역에서 상대적으로 높은 의료이용을 보였다. 본 연구는 기존 연구와는 달리 공간적, 시간적 상관성을 고려함으로써 지역단위 분석시 공간적, 시간적 상관성을 고려하지 않음으로써 발생하는 통계적 오류를 최소화하였다.