• Title/Summary/Keyword: intrastriatal hemorrhage

Search Result 12, Processing Time 0.016 seconds

Effects of Salviae Miltiorrhizae Radix on Blood-Brain Barrier Impairment of ICH-Induced Rats (단삼(丹蔘)이 뇌조직출혈 흰쥐의 혈액뇌관문 손상에 미치는 영향)

  • Park, Chang-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2014
  • Objectives : This study was performed in order to evaluate the effects of Salviae Miltiorrhizae Radix (SMR) water extract against the cerebral hemorrhage and the blood-brain barrier (BBB) impairment in the intracerebral hemorrhage (ICH). Method : ICH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. SMR was orally given three times every 20 hours during 3 days after the ICH induction. Hematoma volume, water content of brain tissue and volume of evans blue leakage were examined. Myeloperoxidase (MPO) positive neutrophils and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were observed with immunofluorescence labeling and confocal microscope. Results : SMR significantly reduced the hematoma volume of the ICH-induced rat brain. SMR significantly reduced the water content of brain tissue of the ICH-induced rat brain. SMR reduced the percentage of the evans blue leakage around the hematoma on the caudate putamen compared to the ICH group, especially on the cerebral cortex. SMR significantly reduced the volume of the evans blue leakage level in the peri-hematoma regions of the ICH-induced rat brain. SMR significantly reduced MPO positive neutrophils in the peri-hematoma regions of the ICH-induced rat brain. SMR reduced the TNF-${\alpha}$ expression in peri-hematoma regions of the ICH-induced rat brain. TNF-${\alpha}$ immuno-labeled cells were coincided with MPO immuno-labeled neutrophils in peri-hematoma regions of the ICH-induced rat brain. Conclusion : These results suggest that SMR plays a protective role against the blood-brain barrier impairment in the ICH through suppression of inflammation in the rat brain tissues.

Effects of Rhodiola Rosea on Brain Edema and Matrix Metalloproteinase Expressions Following Intracerebral Hemorrhage in the Rat (홍경천(紅景天)이 뇌조직내출혈(腦組織內出血) 흰쥐의 뇌부종(腦浮腫)과 Matrix Metalloproteinase 발현에 미치는 영향)

  • Ryu, Sa-Hyun;Lee, Joon-Suk;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.169-180
    • /
    • 2011
  • Objectives : This study aimed at evaluation of the effects of Rhodiola rosea on brain edema and expressions of matrix metalloproteinases (MMPs) related to blood-brain barrier (BBB) disruption. Methods : Brain edema following intracerebral hemorrhage (ICH) was induced by the stereotaxic intrastriatal injection of bacterial collagenase type VII in rats (Sprague-Dawley). Then ethanol extract of Rhodiola rosea was treated once a day for 3 days. Brain edema % and water contents, and BBB leakage were examined. Immunohistochemistry was processed for MMP-9, MMP-12, and iNOS expressions in the brain sections and each immuno-labeled cells were analyzed with image analysis software. Results : 1. Ethanol extract of Rhodiola rosea reduced brain edema following ICH in rats significantly. 2. Ethanol extract of Rhodiola rosea reduced excessive brain tissue water contents following ICH in rats significantly. 3. Ethanol extract of Rhodiola rosea reduced BBB leakage in the cerebral cortex following ICH in rats. 4. Ethanol extract of Rhodiola rosea reduced cellular edema of neurons in peri-hematoma and the cerebral cortex following ICH in rats significantly. 5. Ethanol extract of Rhodiola rosea reduced MMP-9 positive cells in the cerebral cortex following ICH in rats significantly. 6. Ethanol extract of Rhodiola rosea reduced MMP-12 positive vessels in the cerebral cortex following ICH in rats significantly. 7. Ethanol extract of Rhodiola rosea reduced iNOS positive cells in the cerebral cortex and external capsule following ICH in rats significantly. Conclusions : These results suggest that Rhodiola rosea reveals protective effect against brain edema and cytotoxic edema of neurons by means of down-regulation of MMPs and iNOS expressions, and inhibition of BBB leakage.