• 제목/요약/키워드: intramolecular reaction

검색결과 145건 처리시간 0.022초

An Efficient Synthesis of α-Amino-δ-valerolactones by the Ugi Five-Center Three-Component Reaction

  • Kim, Young-Bae;Park, Soo-Jung;Geum, Gyo-Chang;Jang, Min-Seok;Kang, Soon-Bang;Lee, Duck-Hyung;Kim, You-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1277-1320
    • /
    • 2002
  • A novel approach to ${\alpha}-amino-{\delta}-valerolactone$ derivatives 8 by the intramolecular Ugi five-center three-component reaction (U-5C-3CR) using the multifunctional starting material, L-pentahomoserine 5 is described.

새로운 Quinoxaline류의 합성과 토토머화 현상 (제1보) (Synthesis and Tautomerism of Novel Quinoxalines (Part I))

  • 김호식;김진희
    • 대한화학회지
    • /
    • 제47권3호
    • /
    • pp.241-249
    • /
    • 2003
  • 3-(1-Ethoxycarbonyl)ethyl-1,2-dihydro-2-oxoquinoxaline(8)을 hydrazine hydrate와 반응시켜 3-(1-hydrazinocarbonyl)ethyl-2-hydroxyquinoxaline(9)을 합성하였고, 화합물 9를 치환 벤즈알데하이드류 또는 heteroaryl aldehyde류와 반응시켜 2-hydroxyquinoxaline류(10-12)를 합성하였다. 또한 화합물 9를 alkyl (ethoxymethylene)- cyanoacetate류 또는 ethoxymethylenemalononitrile과 반응시켜 분자내 고리화반응에 의하여 5-amino-1-[2-(3-hydroxyquinoxalin-2-yl)propanoyl]-pyrazole류(13)를 합성하였다. 얻어진 화합물 10-13은 dimethyl sulfoxide 용액에서 lactam형과 lactime형 사이에 토토머화 현상을 나타내었는데, 이들의 토토머 비를 $^1H$ NMR로서 측정하였다. 그리고 합성한 화합물들에 대한 제초력과 살균력도 조사하였다.

Synthesis and Reactivity of the Pentacoordinate Organosilicon and -germanium Compounds Containing the C,P-Chelating ο-Carboranylphosphino Ligand [ο-C2B10H10PPh2-C,P](CabC,P

  • Lee, Tae-Gweon;Kim, Sang-Hoon;Kong, Myong-Seon;Kang, Sang-Ook;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.845-851
    • /
    • 2002
  • The synthesis of the intramolecular donor - stabilized silyl and germyl complexes of the type ($Cab^c.p) MMe_2X$ (2a:M=Si, X=Cl;2b;M= Ge, X=Cl;2e;M=Si,X=H) was achieved by the reaction of $LiCab^c,p$ (1) with $Me_2SiClX$ and $Me_2GeCl_2$ respectively. The intramolecular M←P interacion in 2a-2c is provided by $^1H$, $13^C.$, $31^P$ and $29^Si$ NMR spectroscopy. The salt elimination reactions of dichlorotetramethyldisilane and -digermane with 1 afforded the $bis(\sigma-carboranylphosphino)disilane$ and disgermane [$(Cab^C.P)MMe_2]_2(4a;M$ = Si;4b: M=Ge). The oxidative addition reaction of 4a-4b with $pd_2(dba)_3CHCl_3afforded$ the bis(silyl)-and bis(germyl)-palladium complexes. The chloro-bridged dipalladium complexes were obtained by the reaction of 2a-2b with $pd_2(dba)_3CHCl_3$ The crystal structures of 5a and 7b were determined by X-ray structural studies.

친핵성 첨가반응에 대한 용매효과 (I) Phenylvinylketone에 대한 아민의 첨가반응속도에 미치는 용매의 극성효과 (Solvent Effects on the Nucleophilc Addition (I) Effect of Solvent Polarity on the Nucleophilic Addition of Amine to Phenylvinylketone)

  • 신갑철;김태린
    • 대한화학회지
    • /
    • 제36권2호
    • /
    • pp.287-292
    • /
    • 1992
  • 여러 가지 용매에서 phenylvinylketone에 대한 아민(piperidine 및 diethyl-amine)의 친핵성 첨가반응 속도 상수를 $25^{\circ}C$에서 분광광도법으로 측정한 결과 그의 첨가반응 속도상수는 용매의 극성에 비례함을 알았고 이것을 Kirkwood식으로 잘 설명할 수 있었다. 즉, 이 반응은 고리형 구조의 zwitter ion 중간체를 거쳐 일어남을 알 수 있었다. 또 phenylvinylketone에 대한 아민의 첨가반응에서 3차 아민은 1차 및 2차 아민에서 보다 반응이 훨씬 느리게 진행되었으며 이것은 1차 및 2차 아민에서는 고리형 구조의 zwitter ion 중간체를 형성할 수 있고 또한 음전하의 비편재화 및 엔올형의 구조까지 가능하지만 3차 아민에서는 위의 구조들이 불가능하기 때문에 1차 및 2차 아민에서 보다 느리게 진행된다고 생각된다.

  • PDF

Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong;Kim, Jeong-Kwon;Jang, Seong-Ho;Mulholland, James A.;Ryu, Jae-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.211-217
    • /
    • 2007
  • Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.

Probing the Critical Residues for Intramolecular Fructosyl Transfer Reaction of a Levan Fructotransferase

  • Moon, Keum-Ok;Choi, Kyoung-Hwa;Kang, Ho-Young;Oh, Jeong-Il;Jang, Se-Bok;Park, Cheon-Seok;Lee, Jong-Hoon;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1064-1069
    • /
    • 2008
  • Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose-2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.