• 제목/요약/키워드: intramolecular reaction

검색결과 145건 처리시간 0.021초

A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2971-2975
    • /
    • 2012
  • Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

Synthesis and Characterization of New Polyaza Macrocyclic Nickel(Ⅱ) and Copper(Ⅱ) Complexes Two Nitrile or Imidate Ester Pendant Arms: Metal-Mediated Hydrolysis and Alcoholysis of the Nitrile Groups

  • Kang, Shin-Geol;Song, Jeong-Hoon;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.824-829
    • /
    • 2002
  • New di-N-cyanomethylated tetraaza macrocycle 2.13-bis(cyanomethyl)-5.16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^7.12$]docosane $(L^2)$ has been prepared by the reaction of 3, 14-dimethyl-2,6,13,17-tetraazatricyclo $(L^1)$ with bromoacetonitrile. The square-planar complexes $[ML^2](ClO_4)_2(M=Ni(II)$ or Cu(II) can be prepared by the reaction of $L^2$ with the corresponding metal ion in acetonitrile. The cyanomethyl groups of $[ML^2](ClO_4)_2readily$ react with water to $yield[ML^3](ClO_4)_2$ containing pendant amide groups. The trans-octahedral complexes $[ML^4](ClO_4)_2$, in which two imidate ester groups are coordinated to the metal ion, can be also prepared by the reaction of $[ML^2](ClO_4)_2with$ methanol under mild conditions. The hydrolysis and alcoholysis reactions of $[ML^2](ClO_4)_2are$ promoted by the central metal ion, in spite of the fact that the cyanomethyl group is not involved in intramolecular coordination. The reactions are also promoted by a base such as triethylamine but are retarded by an $acid(HClO_4).Interestingly$, the imidate ester groups of $[ML^4]^2$ are unusually resistant to hydrolysis even in 0.1 M $HCIO_4$ or 0.1 M NaOH aqueous solution. Crystal structure of $[NiL^4](ClO_4)_2shows$ that the Ni-N (pendant imidate ester group) bond is rlatively strong; the Ni-N bond distance is shorter then the Ni-N(tertiary) distance and is similar to the Ni-N (secondary) distance.

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1115-1119
    • /
    • 2013
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.

효소 [CGTase : Cyclodextrin glucanotransferase]의 반응 조건이 산물 [CD : Cyclodextrin]의 특이성에 미치는 영향 (The Effects of CD-product Specificity upon the Enzyme [CGTase] Reaction Condition)

  • 최희욱;홍순강
    • KSBB Journal
    • /
    • 제19권2호
    • /
    • pp.164-167
    • /
    • 2004
  • 효소인 싸이클로덱스트린글루카노트란스퍼라제 (CGTase)는 효소의 활성도에 칼슘이 관련된 분자내 당 전이반응에 의해 녹말과 그에 관련된 $\alpha$-1,4-glucan의 기질을 싸이클로덱스트린으로 생성시키는 산업적으로 가장 많이 응용되는 효소 중에 하나이다. 수용성 녹말을 기질로 하여 CLEC화한 Bacillus macerans $\alpha$-CGTase 효소를 극한의 반응 조건인 계면활성제나 유기 용매가 혼합된 반응조건에서 실험한 결과, 이들 조건이 싸이클로덱스트린의 생산을 증가시키는 영향을 초래하였고 특히, 계면활성제인 SDS와 $\beta$-OG는 전체 싸이클로덱스트린의 생성을 증가시켰고 이 중에서 SDS와 Lubrol PX는 알파싸이클로덱스트린의 생성의 특이성의 결과를, 반면에 Triton x-100과 Tween 80은 알파싸이클로덱스트린의 생성을 억제하는 결과를 보였다. 유기용매인 DMSO, formamide, MPD, ethylene glycol 또한 사이클로 덱스트린의 전체 수율과 특이성에 영향을 미치는 효력을 보였다.

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

친핵성 치환 반응에 의한 Dibenzo-18-crown-6 의 Nitro 유도체 화합물의 Crown Ether 고리 끊어짐 (제 1 보) (The Nucleophilic Crown Ether Ring Cleavage of Nitro Derivatives of Dibenzo-18-crown-6-(I))

  • 장세희;조성아
    • 대한화학회지
    • /
    • 제32권1호
    • /
    • pp.71-78
    • /
    • 1988
  • 20,21,24,25-Tetranitrodibenzo-18-crown-6에 알코올성 염기를 가하여 친핵성 치환반응을 유도하면 crown ether 화합물을 이루는 polyether 고리가 끊어져서 주생성물로 2,4,5-trialkoxynitrobenzene 유도체, 4,5-dialkoxy-1,2-dinitrobenzene 유도체 그리고 crown ether 고리가 부분적으로 끊어져 생긴 bis[(alkoxynitrophenoxy)ethyl]ether 유도체가 부생성물로 얻어졌다. 이가 알코올성 염기에서는 polyether 고리가 끊어진 생성물과 분자내 치환반응이 다시 진행되어 고리축소 현상이 일어나 12-crown-4의 유도체를 얻게 되거나 출발물질이 도로 생성되었다. 이상의 실험은 다양한 알코올의 농도에서 염기의 종류를 달리하여 그 선택성을 알아보았다.

  • PDF

Synthesis, Spectral Property and Dyeing Assessment of Azo Disperse Dyes Containing Carbonyl and Dicyanovinyl Groups

  • Choi, Yun Seok;Lee, Kun Su;Kim, Hye Jin;Choi, Jong Yun;Kang, Soon Bang;Lee, Eui Jae;Keum, Gyochang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.863-867
    • /
    • 2013
  • A series of azo disperse dyes having dicyanovinyl groups was synthesized by the Knoevenagel condensation with malononitrile from carbonyl substituted phenylazo disperse dyes which were prepared by conventional diazo coupling reaction of aniline derivatives as diazo components. A variety of coupling components such as anilines, an indole and a pyridone were used. The azo disperse dyes were evaluated for their spectral properties and dyeing assessment on the polyester fabrics. The azo disperse dyes containing dicyanovinyl groups showed bathochromic shifts and darker colors due to increased electron withdrawing strength in their azo components and extended conjugation by dicyanovinyl groups than their parent carbonyl substituted azo dyes. The dyes containing 2-acetylamino-5-methoxy substituent in the coupling component exhibited higher wavelength of maximum absorbance (${\lambda}_{max}$) and significant negative solvatochromism than those of other dyes due to intramolecular hydrogen bonding.

Comparison of Photocyclization Reactions of Fluoro- vs Nonfluoro-Substituted Polymethyleneoxy Donor Linked Phthalimides

  • Park, Hea Jung;Ryu, Young Ju;Kim, Kyung Mok;Yoon, Ung Chan;Kim, Eunae;Sohn, Youngku;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1108-1114
    • /
    • 2013
  • Photochemical reactions of fluoro- vs. nonfluoro-substituted polymethylenoxy chain linked phthalimide were carried out to explore how electronegative fluorine atoms inside the donor chain influence photocyclization reaction efficiencies and to briefly determine the alkali metal binding properties of the photoproducts. The results of this study show that the fluorine-substituted donor chain linked phthalimide undergoes inefficient photocyclization via single electron transfer (SET)-induced excited state pathways to generate 14-membered cyclic amidol compared to nonfluoro-analog due to low electron donor ability of the terminal oxygen donor site. These results show that photoinduced intramolecular SET processes arising from ${\alpha}$-silyl ether electron donors to phthalimides are largely dependent on the kinds of substituents inside donor chain. Finally, a preliminary study with the cyclic amidols generated in this effort showed that they have weak alkali metal cation binding properties regardless of absence/presence of fluoro-substituents.

Conformational Preference of Alanine Dipeptide in the Gas Phase and in Solutions

  • Kim, Daeyou;Kang, Young-Kee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.73-73
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of alanine (Ac-Ala-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level with the 6-3l+G(d) basis set to investigate the conformational preference of alanine depending on the backbone torsion angles $\square$ and$\square$ in the gas phase, chloroform, and water. There are seven local minima (LM) in the gas phase and two additional LM are found in chloroform and water. These two additional LM A (an $\square$-helical structure) and F (a polyproline structure) are stabilized only in solutions. In the gas phase, the lowest LM is the conformation C with a C$\sub$7/ intramolecular hydrogen bond and the relative conformational energies range from 0.3 to 6.0 ㎉/mol. In chloroform, the lowest LM is the conformation E (an extended structure) and the relative conformational energies range from 0.7 to 4.9 ㎉/mol. In particular, we identified 14 possible transition states connecting between seven LM in the gas phase. The search for transition states probable in chloroform and water is now in progress.

  • PDF