• Title/Summary/Keyword: intramolecular reaction

Search Result 145, Processing Time 0.04 seconds

Thermolysis Reactions of 2-Methoxy-2-(o-N,N-dimethylminometiyl)-phenyl-3-tiimetiylsilyl-5,5-dimetiyl-2-silahexane

  • Lee, Myeong Ui;Jo, Hyeon Mo;Kim, Chang Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.793-796
    • /
    • 2000
  • In the neat flow vacuum pyrolysis of 2-methoxy-2-(o-N,N+dimethylaminomethyl)phenyl-3-trimethylsilyl-5,5-dime-thyl-2-silahexane (4) at $600^{\circ}C$ and its static thermolysis at $350^{\circ}C23-benzo-5-aza-1-silacyclohexane$, (5) has been obtained in97% and 46% y ields, respectively. Product 5 might have been formed via an intramolecular rearrangement invoIving a zwitterionic species generated from the pentacoordinated silene Si-atom. From trapping experiments with an excess of MeOH, we have obtained 2-(o-N,N-dimethylaminomethyl)phenyl-5,5-dimethyl-2-trimethylsiloxy-2-silahexane (6) and 2-(o-N,N-dimethylaminomethyl)phenyl-2-methoxy-5,5-dime-thyl-2-silahexane (7) formed via an intermolecular protodesilylation reaction rather than through trapped prod-ucts of the silene.

Theoretical Studies on the Acid-Catalyzed Hydrolysis of Sulfinamide

  • 김찬경;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.880-886
    • /
    • 1997
  • Ab initio calculations were carried out on the gas phase acid-catalyzed hydrolysis reactions of sulfinamide using the 3-21G* basis sets. Single point calculations were also performed at the MP2/6-31G* level. The first step in the acid-catalyzed hydrolysis of N-methylmethanesulfinamide, Ⅰ, involves protonation. The most favorable form is the O-protonated one, Ⅱ, which is then transformed into a sulfurane intermediate, Ⅲ, by addition of a water molecule. The reaction proceeds further by an intramolecular proton transfer from O to N (TS2), which is followed by N-S bond cleavage (TS3) leading to the final products. The rate determining step is the N-S bond cleavage (TS3) at the RHF/3-21G* level, whereas it becomes indeterminable at the MP2/6-31G*//3-21G* level of theory. However, the substituent effect studies with N-protonated N-arylmethanesulfinamide, ⅩⅢ, at the MP2/6-31G*//3-21G* level support the N-S bond breaking step as rate limiting.

Molecular Switching Coordination Polymers. 4.4'-Chalcogenobispyridine Bridged Cobalt Benzoquinone Complexes

  • 조두환;정종화;여환진;손윤수;정옥상
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.504-507
    • /
    • 1995
  • The reaction of Co2(CO)8 with 3,6-di-tert-butyl-1,2-benzoquinone in the presence of the respective 4,4'-chalcogenobispyridine results in the coordination polymers of [CoⅢ(4,4'-X(Py)2)(DBSQ)(DBCat)]n (X=S, Se, Te; Py=pyridine; DBSQ=3,6-di-tert-butylsemiquinone; DBCat=3,6-di-tert-butylcatechol). The title compounds undergo an intramolecular Cat → Co electron transfer, and thus change toward the [CoⅡ(4,4'-X(Py)2)(DBSQ)2]n at elevated temperature. The temperature-switching properties of the compounds directly depend upon the electronegativity of the chalcogen atom of the 4,4'-chalcogenobispyridine coligands. The spectroscopic data disclose that the properties of [CoⅢ(4,4'-S(Py)2)(DBSQ)(DBCat)]n and [CoⅢ(4,4'-Se(Py)2)(DBSQ)(DBCat)]n are similar each other in contrast to those of [CoⅢ(4,4'-Te(Py)2)(DBSQ)(DBCat)]n.

Theoretical Studies on the Gas-Phase Wittig-Oxy-Cope Rearrangement of Deprotonated Diallyl Ether

  • Kim, Chang-Kon;Lee, Ik-Choon;Lee, Hai-Whang;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.678-681
    • /
    • 1991
  • The Wittig-oxy-Cope rearrangements of deprotonated diallyl ether, I, $CH_2={\bar{C}}H-CH-O-CH_2-CH=CH_2$, have been investigated theoretically by the AM1 method. A two step mechanism forming a Wittig product ion, II, $(CH_2=CH)$ $(CH_2=CH-CH_2)$ $CHO^-$, through a radical-pair intermediate was found to provide the most favored reaction pathway in the Wittig rearrangement. The subsequent oxy-Cope rearrangement from species II also involves a two step mechanism through a biradicaloid intermediate. The intramolecular proton transfer in I (to form $CH_2=CH-CH_2-O-{\bar{C}}H-CH=CH_2$) is a higher activation energy barrier process compared to the Wittig and oxy-Cope rearrangements and is considered to be insignificant. These results are in good agreement with the condensed-phase as well as gas-phase experimental results.

Studies on the Desulfurization of 1,3,4-Oxathiazol-2-one and 1,2,4-Dithiazol-3-one with Trivalent Phosphorus Compounds (1,3,4-옥사티아졸-2-온과 1,2,4-디티아졸-3-온의 3가인 화합물과의 탈황반응에 관한 연구)

  • Dong Young Oh;Chung Ryeol Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.368-375
    • /
    • 1983
  • The reactions of various 5-aryl-1,3,4-oxathiazol-2-ones with triethylphosphite resulted in the formation of the corresponding benzonitriles and ethylphosphorothioate by desulfurization reaction in 66∼94% yields. 5-(4-Nitrophenyl)-1,3,4-oxathiazol-2-one was also reacted with trimethylphosphite, triethylphosphine, and triphenylphosphine to give 4-nitrobenzonitrile. But it did not react with triphenylphosphate. The reactions of 5-(4-bromophenyl)-1,2,4-dithiazol-3-one with triphenylphosphine resulted in the formation of 4-bromothiobenzoyl isocyanate and triphenylphosphine thioxide. The thioacyl isocyanate was fragmented into nitrile in ether but was stable in chloroform. This desulfurization reaction observed in each reaction may proceed by the intramolecular rearrangement after insertion of the phosphorus compound into the ring. The stable thioacyl isocyanate in chloroform reacted with imine to give 1,3,5-thiadiazin-4-one via 1,4-cycloaddition reaction.

  • PDF

Intramolecular Ion-Molecule Reactions within Ti+(CH3COCH3)n Heteroclusters: Oxidation Pathway via C=O Bond Activation

  • Koo, Young-Mi;Hong, Ki-Ryong;Kim, Tae-Kyu;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.953-958
    • /
    • 2010
  • A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within $Ti^+(CH_3COCH_3)_n$ heterocluster ions. The reactions of $Ti^+$ with $CH_3COCH_3$ clusters were found to be dominated exclusively by an oxidation reaction, which produced $TiO^+(CH_3COCH_3)_n$ clusters. These ions were attributed to the insertion of a $Ti^+$ ion into the C=O bond of the acetone molecule within the heteroclusters, followed by $C_3H_6$ elimination. The mass spectra also indicated the formation of minor sequences of heterocluster ions with the formulas $Ti^+(C_3H_4O)(CH_3COCH_3)_n$ and $TiO^+(OH)(CH_3COCH_3)_n$, which could be attributed to C-H bond insertion followed by $H_2$ elimination and to the sequential OH abstraction by the $TiO^+$ ion, respectively. Density functional theory calculations were carried out to model the structures and binding energies of both the association complexes and the relevant reaction products. The reaction pathways and energetics of the $TiO^+\;+\;CH_2CHCH_3$ product channel are presented.

Decomposition of Paraoxon and Parathion by Amines, HOO- and OH- Ions: Reaction Mechanism and Origin of the α-Effect

  • Bae, Ae-Ri;Lee, Jieun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.201-206
    • /
    • 2013
  • The second-order rate constants have been measured spectrophotometrically for the reactions of paraoxon 1 and parathion 2 with a series of alicyclic secondary amines, $OH^-$ and $HOO^-$ ions in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. A linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.40 was obtained for the reactions of 1 with amines and $OH^-$. The reaction has been concluded to proceed through a concerted mechanism. $HOO^-$ deviates positively from the linear Br${\o}$nsted-type plot, implying that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect ($k_{HOO^-}/k_{OH^-}$) was found to be ca. 55 for the reaction of 1 and 290 for that of parathion 2, indicating that $HOO^-$ is highly effective in decomposition of the toxic phosphorus compounds although it is over 4 $pK_a$ units less basic than $OH^-$. Among the theories suggested as origins of the ${\alpha}$-effect (e.g., TS stabilization through an intramolecular Hbonding interaction, solvent effect, and polarizability effect), polarizability effect appears to be the most important factor for the ${\alpha}$-effect in this study, since the polarizable $HOO^-$ exhibits a larger ${\alpha}$-effect for the reaction of the more polarizable substrate 2.

Synthesis of $Cp^*Ru(CO)(PR_3)H$ Type Complexes and Photo-Induced H/D Exchange Reaction ($Cp^*Ru(CO)(PR_3)H$형 착물의 합성과 광반응에 의한 H/D 교환반응)

  • Lee, Dong Hwan;Kim, Sng Il;Kim, Jang Il;Oh, Yung Hee;Kam, Sang Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.12
    • /
    • pp.645-652
    • /
    • 1997
  • Hydride complexes Cp*Ru(CO)(PR3)H (Cp*=η5-C5Me5, PR3=PMe3, PEt3, PMePh2, PPh3, PCy3)(4a-4f) were synthesized by the reaction of the corresponding chloro complex Cp*Ru(CO)(PR3)Cl (3a-3f) with various hydridic reagent (NaBH4, LiAlH4, LiBEt3H) or NaOMe. Irradiation of Cp*Ru(CO)(PCy3)H (5e) in C6D6 solution with UV light caused H/D exchange reaction between coordinated Cp*, PCy3 and/or Ru-H ligand proton and a deuterium of the deuterated aromatic solvent through a series of inter- and intramolecular C-H activation. The proposed mechanism was described.

  • PDF

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1547-1550
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{3}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{3}$ with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. Substrate $\mathbf{4}$ is much less reactive than $\mathbf{3}$ and the steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been attributed to its decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{3}$ and $\mathbf{4}$ are linear with ${\beta}_{nuc}=0.57$ and 0.45, respectively. Thus, the reactions have been concluded to proceed through a concerted mechanism, although the current reactions were expected to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$. It has been proposed that the rate of leaving-group expulsion is accelerated by the intramolecular H-bonding interaction in $T^{\pm}$ and the "push" provided by the RO group through the resonance interaction. Thus, the enhanced nucleofugality forces the reactions to proceed through a concerted mechanism. The reactivity-selectivity principle (RSP) is not applicable to the current reaction systems, since the reaction of the less reactive $\mathbf{4}$ results in a smaller ${\beta}_{nuc}$ than that of the more reactive $\mathbf{3}$. Steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been suggested to be responsible for the failure of the RSP.