• 제목/요약/키워드: intracellular uptake

검색결과 178건 처리시간 0.024초

가토 신피질 절편에서 PAH$(\rho-aminohippuric\;acid)$ 이동에 미치는 음이온의 영향 (Effects of Anions on PAH Transport in Rabbit Kidney Cortical Slices)

  • 서덕준;이상호;성호경
    • The Korean Journal of Physiology
    • /
    • 제19권1호
    • /
    • pp.49-59
    • /
    • 1985
  • The effects of anions on net accumulation of $(\rho-aminohippuric\;acid)$(PAH) were studied in rabbit kidney cortical slices. Experiments were carried while varying the major anionic composition of the incubation medium(replacement of $Cl^-$ by isethionate and $SCN^-$). The total replacement of $Cl^-$ with isethionate, $SO_4\;^{2-}$ and $SCN^-$ in the incubation medium decreased the 60-min slice-to-medium concentration(S/M) ratio of PAH to 60%, 40% and 50% of control value, respectively. The degree of inhibition in PAH accumulation by the replacement of isethionate and $SCN^-$ was increased with increasing of both preincubation and incubation time. The influence of isethionate and $SCN^-$ on PAH uptake was fully reversible. Both isethionate and $SCN^-$ increased the apparent Km value significantly with no change on the apparent Vmax value, suggesting a competitive inhibition on PAH uptake. And the inhibitory effect of $SCN^-$ on PAH uptake decreased with increase of pH in the incubation medium while that of isethionate increased with increase of pH. Intracellular water content, intracellular electrolyte concentration and oxygen consumption were not influenced by the replacement of $Cl^-$ with isethionate or $SCN^-$ in the incubation medium. These results suggest that both $isethionate^-$ and $SCN^-$ inhibit the PAH uptake by binding to some site necessary for normal PAH transport without affecting the cellular viability.

  • PDF

돼지 관상동맥에서 고려인삼의 Protopanaxatriol과 Protopanaxadiol의 혈관이완 효과 (Vasorelaxing Effect by Protopanaxatriol and Protopanaxadiol of Panax ginseng in the Pig Coronary Artery)

  • Chang, Seok-Jong;Suh, Jang-Soo;Jeon, Byeong-Hwa;Nam, Ki-Yeul;Park, Hae-Kun
    • Journal of Ginseng Research
    • /
    • 제18권2호
    • /
    • pp.95-101
    • /
    • 1994
  • Saponin of Panax ginseng (C.A. Meyer) is composed of Protopanaxatriol (PT) and Protopanaxa- diol (PD). We investigated the effects of PT and PD on the contractility and $^{45}Ca$ uptake in the pig coronary artery. Isometric tension in the helical strips and $^{45}Ca$ uptake in the ring strips were measured in the presence or absence of PT and PD. PT and PD did not affect the high K+ (40 mM)-induced contraction but relaxed the ACh-induced contraction in a dose4ependent manner (1~10 mg/dl). The vasorelaxing effect of PT on the ACh-induced contraction was more potent than that of PD. Those relaxations were partially suppressed by the rubbing of endothelium removal. ACh-induced contraction in the $Ca^{2+}$-free Tyrode's solution was suppressed by the pretreatment of PT or PD. Following the depletion of ACh-sensitive intracellular $Ca^{2+}$ pool, ACh-induced contraction was suppressed by the pratreatment of PT or PD. With the pretreatment of PT or PD, $^{45}Ca$ uptake by high K+ (43 mM) was not changed but that by ACh was suppressed in the pig coronary artery. From the above results, we suggested that the vasorelaxing effect of PT and PD of Panax ginseng was due to inhibition of intracellular $Ca^{2+}$ release, inhibition of $Ca^{2+}$ uptake via receptor-operated $Ca^{2+}$ channels and in part a release of vasorelaxing factor from endothelium in pig coronary artery.

  • PDF

Kinetic Analysis about the Bidirectional Transport of 1-Anilino-8-naphthalene Sulfonate (ANS) by Isolated Rat Hepatocytes

  • Lee, Pung-Sok;Song, Im-Sook;Shin, Tae-Ha;Chung, Suk-Jae;Shim, Chang-Koo;Song, Sukgil;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • 제26권4호
    • /
    • pp.338-343
    • /
    • 2003
  • The purpose of the present study was to investigate the bidirectional transport of 1-anilino-8-naphthalene sulfonate (ANS) using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was saturable, with a $K_m of 29.1\pm3.2 \mu M and V_{max} of 2.9\pm0.1$ mmol/min/mg protein. Subsequently, the initial efflux rate of ANS from isolated hepatocytes was determined by resuspending preloaded cells to 3.0% (w/v) BSA buffer. The efflux process for total ANS revealed a little saturability. The mean value of the efflux clearance was $2.2\pm0.1 \mu$ L/min/mg protein. The efflux rate of ANS from hepatocytes was markedly decreased at $4^{\circ}C$, indicating that the apparent efflux of ANS might not be attributed to the release of ANS bound to the cell surface, but to the efflux of ANS from intracellular space. The efflux clearance was furthermore corrected for the unbound intracellular ANS concentration on the basis of its binding parameters to cytosol. The relation between efflux rate and unbound ANS concentration was fitted well to the Michaelis-Menten equation with a saturable and a nonsaturable components. The $V_{max} and K_m$ values were 0.54 mmol/min/mg protein, and 10.0 $\mu$ M, respectively. Based on the comparison of the ratios of $V_{max} to K_m (V_{max}/K_m)$ corresponding to the transport clearance, the influx clearance was two times higher than the efflux clearance. Together with our preliminary studies that ATP suppression in hepatocytes substantially inhibited ANS influx rate, we concluded that the hepatic uptake of ANS is actively taken up into hepatocytes via the carrier mediated transport system.

Propranolol이 심근 sarcoplasmic reticulum 및 mitochondria 의 $Ca^{++}$ 조절작용에 미치는 효과에 관한 연구 (Effect of Propranolol on the $Ca^{++}$-regulation of Cardiac Sarcoplasmic Reticulum and Mitochondria)

  • 최수승
    • Journal of Chest Surgery
    • /
    • 제19권2호
    • /
    • pp.197-208
    • /
    • 1986
  • Propranolol is one of clinically useful antiarrhythmic agents and electrophysiologically classified as group II. And the negative inotropic effect which is not related to adrenolytic effect has been demonstrated with high concentration of propranolol. On the other hand, it has been well known that the calcium plays a central role in excitation-contraction coupling process of myocardium and also in electrophysiological changes of cell membrane. Author studies the effect of propranolol on calcium uptake and release in sarcoplasmic reticulum and mitochondria prepared from porcine myocardium to investigate the mechanism of action of propranolol on myocardium. The results are summarized as follow: 1] The maximum Ca++-uptake of sarcoplasmic reticulum is inhibited by propranolol in a dose dependent manner. 2] The release of calcium from sarcoplasmic reticulum is not affected by propranolol but with higher than 1x10-3 M of propranolol, rate of calcium release from sarcoplasmic reticulum is decreased. 3] Propranolol inhibits the maximum uptake and uptake rate of calcium in mitochondria non-competitively. [Ki = 6.21 x 10-4 M] 4] The rate of Na+ induced calcium release from mitochondrion shows a function of [Na+]2 and is inhibited by propranolol with the concentration significantly lower than that affect the calcium uptake in sarcoplasmic reticulum and in mitochondria [Ki = 2.91 x 10-5 M]. These results suggest that propranolol affects the intracellular calcium homeostasis which may considered to be one of the mechanism of action of propranolol on myocardium.

  • PDF

Effect of Hypoxia on the Doxorubicin Sensitivity of Human MCF-7 Breast Cancer Cells

  • Lim, Soo-Jeong;Kang, He-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권5호
    • /
    • pp.287-290
    • /
    • 2007
  • Intrinsic or acquired resistance to chemotherapeutic drugs is one of the major obstacles to effective cancer treatment. Hypoxia is widespread in solid tumors as a consequence of decreased blood flow in the tumor-derived neovasculature. The recent finding of a link between hypoxia and chemoresistance prompted us to investigate whether hypoxia induces doxorubicin resistance in human MCF-7 breast cancer cells. Low oxygen concentration decreased the doxorubicin sensitivity in MCF-7 cells. The expression of p-glycoprotein, a major MDR-related transporter, and those of apoptosis-related proteins (anti-apoptotic Bcl-2, Bcl-XL and pro-apoptotic Bax) were not altered by hypoxia in MCF-7 cells. Intracellular uptake of doxorubicin was significantly decreased under hypoxic conditions. Decreased cellular uptake of doxorubicin under hypoxia may contribute to causing doxorubicin resistance in these cells. The use of agents that can modulate the doxorubicin uptake for adjuvant therapy may contribute to improving the therapeutic efficacy of doxorubicin in breast cancer patients.

음이온계 약물의 간수송과정에 있어서 담체매개 수송의 약물동력학적 모델링 및 시뮬레이션 (Pharmacokinetic Modeling and Simulation of the Carrier-Mediated Hepatic Transport of Organic Anions)

  • 이준섭;강민희;김묘경;이명구;정석재;심창구;정연복
    • 약학회지
    • /
    • 제47권2호
    • /
    • pp.110-119
    • /
    • 2003
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the ″in vivo counter-transport″ phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of ″counter-transport″ phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of a organic anion were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, ″in vive counter-transport″ phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The ″in vivo counter-transport″ phenomena in the hepatic transport of a organic anion were well demonstrated by incorporating the carrier-mediated process. However, the ″in vivo counter-transport″ phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called ″in vivo counter-transport″ experiments.

Effects of Tea Constituents on Intracellular Level of the Major Tea Catechin, (-)-Epigallocatechin-3-gallate

  • Hong, Jun-Gil;Yang, Chung-S.
    • Food Science and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.167-170
    • /
    • 2007
  • (-)-Epigallocatechin-3-gallate (EGCG), a mai or tea catechin has been shown to have many interesting biological activities. In the present study, we studied the effects of green tea catechins, EGCG metabolites, and black tea theaflavins on accumulation of EGCG in HT-29 human colon cells. Intracellular levels of [$^3H$]-EGCG were not changed significantly in the presence of other tea catechins including (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin-3-gallate. EGCG methyl metabolites and EGCG 4"-glucuronide did not affect cellular levels of [$^3H$]-EGCG. Black tea theaflavins and theasinensin A (TsA), an EGCG oxidative dimer, however, significantly decreased cellular accumulation of EGCG in HT-29 cells by 31-56%. This decrease was more pronounced when cells were incubated in the presence of theaflavin-3',3"-digallate (TFdiG) or TsA. When EGCG was added separately from TFdiG or TsA, the accumulation of EGCG in HT-29 cells was also significantly decreased regardless of when TFdiG or TsA was added during the uptake study (p<0.01). The results suggest that theaflavins and TsA may interrupt EGCG absorption through the gastrointestinal epithelium.

Inhibition of Sarcoplasmic Reticulum $Ca^{2+}$ Uptake by Pyruvate and Fatty Acid in H9c2 Cardiomyocytes: Implications for Diabetic Cardiomyopathy

  • Lee, Eun-Hee;Lee, Hye-Kyung;Kim, Hae-Won;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.195-201
    • /
    • 2005
  • High extracellular glucose concentration was reported to suppress intracellular $Ca^{2+}$ clearing through altered sarcoplasmic reticulum (SR) function. In the present study, we attempted to elucidate the effects of pyruvate and fatty acid on SR function and reveal the mechanistic link with glucose-induced SR dysfunction. For this purpose, SR $Ca^{2+}$-uptake rate was measured in digitonin-permeabilized H9c2 cardiomyocytes cultured in various conditions. Exposure of these cells to 5 mM pyruvate for 2 days induced a significant suppression of SR $Ca^{2+}$-uptake, which was comparable to the effects of high glucose. These effects were accompanied with decreased glucose utilization. However, pyruvate could not further suppress SR $Ca^{2+}$-uptake in cells cultured in high glucose condition. Enhanced entry of pyruvate into mitochondria by dichloroacetate, an activator of pyruvate dehydrogenase complex, also induced suppression of SR $Ca^{2+}$-uptake, indicating that mitochondrial uptake of pyruvate is required in the SR dysfunction induced by pyruvate or glucose. On the other hand, augmentation of fatty acid supply by adding 0.2 to 0.8 mM oleic acid resulted in a dose-dependent suppression of SR $Ca^{2+}$-uptake. However, these effects were attenuated in high glucose-cultured cells, with no significant changes by oleic acid concentrations lower than 0.4 mM. These results demonstrate that (1) increased pyruvate oxidation is the key mechanism in the SR dysfunction observed in high glucose-cultured cardiomyocytes; (2) exogenous fatty acid also suppresses SR $Ca^{2+}$-uptake, presumably through a mechanism shared by glucose.

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • 제23권3호
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.

Increase in $Na^+-Ca^{2+}$ Exchange Activity in Sarcolemma Isolated from Mesenteric Arteries of Spontaneously Hypertensive Rats

  • Lee, Shin-Woong;Lee, Jeung-Soo;Park, Young-Joo;Park, In-Sook
    • Archives of Pharmacal Research
    • /
    • 제12권2호
    • /
    • pp.128-134
    • /
    • 1989
  • $Na^+-Ca^{2+}$ exchange process in sarcolemmal vesicles isolated from mesenteric arteries of Wistar-Kyoto normotensive(WKY) and spontaneously hypertensive rats(SHR) was investigated. The sarcolemmal fractions isolated after homogenization and sucrose density gradient centrifugation were enriched with 5'-nucleotidase and ouabain sensitive, $K^+-dependent$ phosphatase activities. When the vesicles were loaded with $Na^+$, a time dependent $Ca^{2+}$ uptake was observed. However, very little $Ca^{2+}$ uptake was observed when the vesicles were loaded with $K^+$, or $Ca^{2+}$ uptake of the $Na^+-loaded$ vesicles was carried out in high sodium medium so that there was no sodium gradient. When the vesicles loaded with $Ca^{2+}$ by $Na^+-Ca^{2+}$ exchange were diluted into potassium medium containing EGTA, $Ca^{2+}$ was rapidly released from the vesicles. $Na^+-dependent\;Ca^{2+}$ uptake was increased in SHR compared to WKY, but passive efflux of preaccumulated $Ca^{2+}$ from the vesicles was decreased in SHR. The data indicate that the membrane vesicles of rat mesenteric arteries exhibit $Na^+-Ca^{2+}$ exchange activity. It is also suggested that changes of this process in vascular smooth muscle cell membrane of SHR may be involved in higher intracellular $Ca^{2+}$ concentration and higher basal tone in SHR.

  • PDF