• Title/Summary/Keyword: intracellular $Mg^{2+}$

Search Result 304, Processing Time 0.033 seconds

A Study on Antibacterial Effects of Five Single Herbs Aqueous Extracts against Staphylococcus aureus (5종 단미제의 Staphylococcus aureus에 대한 in vitro 항균력 평가)

  • Park, Eun-Young;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.1
    • /
    • pp.25-40
    • /
    • 2013
  • Objectives: The object of this study was to observe the in vitro antibacterial effects of five single(Pulsatillae Radix, Patrinae Radix, Sanguisorbae Radix, Sophorae Flos, and Sophorae Radix) aqueous herbal extracts, traditionally used for treating various gynecological diseases including mastitis in Korea, against Staphylococcus aureus. Methods: Antibacterial activities against Staphylococcus aureus of aqueous extracts of Pulsatillae Radix, PatrinaeRadix, Sanguisorbae Radix, Sophorae Flos, and Sophorae Radix were detected using standard agar microdilution methods. In addition, the effects on the bacterial growth curve were also monitored at Minimal Incubation Concentration(MIC) and $MIC{\times}2$ levels. The effects on the intracellular killing and bacterial invasion of individual test materials were also observed using murine macrophage(Raw 264.7) and human mammary gland carcinoma cell(MCF-7). Results: MIC of aqueous extracts of Pulsatillae Radix, Patrinae Radix, Sanguisorbae Radix, Sophorae Flos, and Sophorae Radix against Staphylococcus aureus were detected as $0.215{\pm}0.107$ mg/ml, $0.273{\pm}0.107$ mg/ml, $0.469{\pm}0.297$ mg/ml, $11.850{\pm}8.406$ mg/ml, and $0.664{\pm}0.546$ mg/ml, respectively. MIC of Ciprofloxacin was detected as $0.469{\pm}0.297{\mu}g/ml$ at same conditions. In addition, all five single aqueous herbal extracts were also showed marked dosage-dependent inhibition of bacterial growth. The effects of intracellular killing with Raw 264.7 and inhibition of bacterial invasion with MCF-7 cells were detected, in the order of Sophorae Flos, Pulsatillae Radix, Patrinae Radix, Sanguisorbae Radix and Sophorae Radix aqueous extracts in the present study. Conclusions: The results obtained in this study suggest that all five single aqueous herbal extracts showed antibacterial effects against Staphylococcus aureus and they also showed dosage-dependent inhibitory effects on the bacterial growth. They showed the significant intracellular killing and inhibition of bacterial invasion effects. It means, all five single aqueous herbal extracts may show potent anti-infectious effects against Staphylococcus aureus for mastitis.

Production and Reaction Properties of Phytase by Saccharomyces cerevisiae CY strain (Saccharomyces cerevisiae CY 균주에 의한 Phytase의 생성과 반응특성)

  • Seo, Sung-Won;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.228-232
    • /
    • 2005
  • A yeast strain producing phytase, isolated from a mash of Korean traditional Yakju, was identified as a strain of Saccharomyces cerevisiae and designated as Saccharomyces cerevisiae CY strain. Phytase was produced by CY strain both intracellularly and extracellularly. Total phytase activity by the shaking culture was about two times higher than that of the static culture. The portion of extracellular phytase to total phytase activity ranged between 23 and 49 percent, depending on the glucose concentration in the culture medium. Phytase production was reached at approximately 1 U/ml as total phytase activity and the maximum intracellular phytase activity was 0.17-0.19 U/mg-DCW at late logarithmic growth phase. The optimum reaction pH and temperature of intracellular phytase were 3.5 and $40^{\circ}C$, respectively. Over 95% of the phytate was degraded by growing cells after 36 hours yeast cell culture and about 90% of total phytate was effectively degraded by suspending the whole cell with the biomass of 0.4 mg-DCW/ml-reaction solution after 12 hours degradation reaction.

Anti-obesity Effects of Extracts from Young Akebia quinata D. Leaves (어린 으름잎 추출물(Akebia quinata D. Leaves)의 항비만 효과)

  • Jeon, Yongseop;You, Yanghee;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.2
    • /
    • pp.200-206
    • /
    • 2014
  • We investigated the in vitro and in vivo anti-obesity effects of extracts from young Akebia quinata D. leaves, including hot water (AQH) and 80% ethanol (AQE) extracts. The inhibitory effects of AQH and AQE on lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Compared to control, lipid accumulation was significantly reduced by 18.3% with the treatment upon AQE at a concentration of $5{\mu}g/mL$. The levels of intracellular triglycerides and free glycerol were also reduced by 52.8% and 9.1% at the same concentration of AQE. The in vivo anti-obesity effect of AQE was evaluated in terms of body and white adipose tissue weights in ICR mice. Experimental groups were divided into the following five groups: normal diet (ND), high fat diet (HFD), high fat diet with 60 mg/kg/day of Orlistat (HFD-RF), high fat diet with 200 mg/kg/day of AQE (HFD-AL), and high fat diet with 600 mg/kg/day of AQE (HFD-AH). Feeding of HFD for eight weeks resulted in significant increases in body weight as well as weight gain compared to the ND group. HFD-AH group showed reduced body weight, weight gain, epididymal white adipose tissue weight, and perirenal white adipose weight as compared to the HFD group. These results indicate that AQE supplementation might have beneficial effects on anti-obesity by inhibiting lipid accumulation.

Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality

  • Wang, Dingkang;Zhang, Min;Huang, Jun;Zhou, Rongqing;Jin, Yao;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.

Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

  • Park, Soo Yeon;Je, Jae-Young;Hwang, Joung-Youl;Ahn, Chang-Bum
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.176-182
    • /
    • 2015
  • Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with $IC_{50}$ of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of $457.6{\mu}M$ trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited $H_2O_2$ scavenging activity with $IC_{50}$ of 0.48 mg/mL and $Fe^{2+}$+ chelating activity with $IC_{50}$ of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected $H_2O_2$-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

Effects of nitrogen and organic carbon sources on growth and lipid production of Chlorella sp. KR-1 in flask cultures (플라스크 배양에서 Chlorella sp. KR-1의 균체 성장 및 지질 생산에 대한 질소원 및 유기탄소원의 영향)

  • Lee, Ja-Youn;Seo, Kyoung Ae;Oh, You-Kwan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.110-117
    • /
    • 2014
  • Recently microalgae have been proposed as a promising biodiesel feedstock, owing to their higher lipid productivity and non-arable land based cultivation system. Biomass and lipid productivities of microalgae are largely affected by various environmental and nutritional factors. In this study, the effects of nitrogen (nitrate and ammonium) and organic carbon (glucose and glycerol) sources on the cell growth and lipid production of Chlorella sp. KR-1 were examined in flask cultures. Under autotrophic culture conditions for 15 days, overall cell growth and lipid (fatty acid methyl ester, FAME) production with nitrate were better than those of ammonium, resulting in 1.06 g cell/L and 333 mg FAME/L, respectively. Maximal intracellular lipid contents (348 - 352 mg FAME/g cell) were observed at low concentrations of 1 mM for both nitrate and ammonium. In the supply of light, addition of glucose in the range of 1 - 20 g/L showed higher cell densities than the autotrophic cell growth condition. Higher lipid accumulation of 375 mg FAME/g cell could achieved at 5 g glucose/L albeit of relatively short incubation of 7 days. With glycerol, intracellular lipid contents were ~1.9 times lower than glucose cases although similar cell growths were observed for both carbon sources.

Studies on Intracellular Regulatory Proteins of Pancreatic Exocrine Secretion (이자효소 분비에 관여하는 세포 내 조절 단백에 대한 연구)

  • Chung, Ku-Yong;Choi, Jae-Won;Choi, Hong-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.243-257
    • /
    • 1996
  • CCK and cholinergic agonist stimulate enzyme release from the pancreatic acini via G-protein-mediated activation of phospholipase C, In contrast secretin and related peptides increase the level of cAMP and activate cAMP-dependent protein kinase. Camostat, a synthetic protease inhibitor, causes pancreatic hypertrophy and hyperplasia by increasing the CCK release. In this study, the secretagogue-induced changes of intracellular proteins were examined in the dispersed pancreatic acini of rats with or without camostat treatment. Camostat(FOY-305, 200 mg/kg, p.o.) was given for 4 days twice daily and the dispersed acini were prepared at 12 bouts after last treatment. The profiles of Intracellular phosphoproteins were analyzed by two-dimensional gel electrophoresis after incubating the acini with $^{32}P$. The amylase release from the dispersed acini was measured. The pancreatic weight was increased to 126% of control, while amylase activity per mg acinar protein decreased to 41% of control, The maximum response of amylase release from dispersed acini to CCK-8 or carbachol was markedly decreased(65% or 46% of control, respectively). The group of intracellular proteins(24 kD, pI $4.5{\sim}8.5$) was increased in quantity by camostat. CCK-8 or secretin increased phosphorylation of a protein(34 kD, pI 4.7) in camostat-treated as well as control rats. CCK-8 increased tyrosine phosphoryiation in the acini of control rats. However, in camostat-treated rats, the basal level of tyrosine phosphorylation was increased and it was rather decreased by CCK-8. Secretin had no effect on the level of tyrosine phosphorylation in acini. These results indicate that both phospholipase C and adenylate cyclase induce phosphorylation of an intracellular acinar protein(34 kD, pI 4.7) and camostat treatment increases the basal level of tyrosine phosphorylation in acinar cells. And these results suggest that not only serine/threonine protein kinase but also protein tyrosine kinase/phosphatase are involved in the process of CCK receptor mediated stimulation-secrelion coupling.

  • PDF

Regulation of circulating Mg2+ concentration in rats by ATP depletion (흰쥐에서 ATP 결핍에 의한 혈중 Mg2+ 농도조절)

  • Kim, Shang-jin;Baek, Sung-soo;Shim, So-yeon;Oh, Sung-suck;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.267-274
    • /
    • 2000
  • Since intracellular free $Mg^{2+}$ ($[Mg^{2+}]_i$) appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion into circulation. Extracellualr $Mg^{2+}$ contents ($[Mg^{2+}]_o$) were measured in rat erythrocytes, the perfused heart and liver, and plasma in the anesthetized rat. Animals were injected intraperitoneally with sodium nitrite ($NaNO_2$) and plasma $Mg^{2+}$ was measured after the injection and then 10 and 20 minutes later. An increase in circulating (plasma) $Mg^{2+}$ ($[Mg^{2+}]_c$) and methemoglobin was observed in animals injected with $NaNO_2$ (30 mg/Kg). The time course of the effects demonstrated that $[Mg^{2+}]_c$ and methemoglobin continued to increase 10 minutes after the $NaNO_2$ injection. Under these conditions, there was a sustained increase in $[Mg^{2+}]_c$, but not in methemoglobin, which was inhibited by pretreatment with potassium cyanide (KCN, 4 mg/Kg), indicating that an increase in $[Mg^{2+}]_c$ was accompanied by ATP depletion. Injection of rotenone (0.9 mg/Kg) or 2,4-dinitrophenol (15 mg/Kg) also induced an increase in $[Mg^{2+}]_c$. Reduced respiration rate from 100/min to 10/min during 30 minutes also caused a time-dependent rise in $[Mg^{2+}]_c$. These increase in $[Mg^{2+}]_c$ were inhibited by pretreatment with KCN. In addition, ATP depletion by $NaNO_2$ or KCN sustainedly increased the $[Mg^{2+}]_o$ in rat erythrocytes. $Mg^{2+}$ efflux was stimulated by KCN in the perfused heart and liver, but not by $NaNO_2$. These results suggest that the activation of $Mg^{2+}$ effluxes into the circulation is directly dependent on the ATP depletion-induced increase in $[Mg^{2+}]_i$ and heart, liver and erythrocytes have a major pool of $Mg^{2+}$ that can be mobilized upon cellular energy state.

  • PDF

Effects of Sunghyangchungisan(SHCS) on Oxidant-induced Cell Death in Human Neuroglioma Cells

  • Kim Na-Ri;Kwon Jung-Nam;Kim Young-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.63-76
    • /
    • 2005
  • Objectives: Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and longterm neurodegenerative diseases. This study was undertaken to examine whether Sunghyangchungisan(SHCS), a well-known prescription in Korean traditional medicine, might have beneficial effects on ROS-induced brain cell injury. Methods: Human neuroglioma cell line A172 and H2O2 were employed as an experimental model cell and oxidant. Results: SHCS effectively protected the cells against both the necrotic and apoptotic cell death induced by H2O2. The effect of SHCS was dose-dependent at concentrations ranging from 0.2 to 5mg/ml. SHCS significantly prevented depletion of cellular ATP and activation of poly (ADP-ribose) polymerase induced by H2O2. It also helped mitochondria to preserve its functional integrity estimated by MTT reduction ability. Furthermore, SHCS significantly prevented H202-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that SHCS might exert its role as a powerful scavenger of intracellular ROS. Conclusions: The present study provides clear evidence for the beneficial effect of SHCS on ROS-induced neuroglial cell injury. The action of SHCS as an ROS-scavenger might underlie the mechanism.

  • PDF

Anti-platelet Effect of Black Tea Extract via Inhibition of TXA2 in Rat

  • Ro, Ju-Ye;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.302-312
    • /
    • 2019
  • The aim of this work was to investigate the effect of black tea extract (BTE) on collagen -induced platelet aggregation. In this study, BTE (10~500 ㎍/mL) was shown to inhibit platelet aggregation via thromboxane A2 (TXA2) down-regulation by blocking cyclooxygenase-1 (COX-1) activity. Also, BTE decreased intracellular Ca2+ mobilization ([Ca2+]i). Additionally, BTE enhanced the levels of both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which are aggregation-inhibiting molecules. BTE inhibited the phosphorylation of phospholipase C (PLC) γ2 and syk activated by collagen. BTE regulated platelet aggregation via cAMP-dependent phosphorylation of vasodilator-stimulated phosphoprotein (VASP) Ser157. The anti-platelet effects of BTE in high fat diet (HFD)-induced obese rats were evaluated. After eight weeks of BTE treatment (300 and 600 mg/kg), the platelet aggregation rate in the treated groups was significantly less than that in the HFD-fed control group. Also, BTE exhibited a hepatoprotective effect and did not exert hepatotoxicity. Therefore, these data suggest that BTE has anti-platelet effects on collagen-stimulated platelet aggregation and may have therapeutic potential for the prevention of platelet-mediated thrombotic diseases.