• Title/Summary/Keyword: intestinal pathogenic bacteria

Search Result 63, Processing Time 0.027 seconds

Antimicrobial Activity of Prodigiosin from Serratia sp. PDGS120915 Against Intestinal Pathogenic Bacteria

  • Ji, Keunho;Kim, Young Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.459-464
    • /
    • 2019
  • This study aimed to identify and characterize the antimicrobial activity of prodigiosin produced by Serratia sp. $PDGS^{120915}$ isolated from stream water in Busan, Korea; the identification was performed using phonological, biochemical, and molecular techniques, including 16S rRNA sequence analysis. Prodigiosin from the bacterial culture was purified by high-performance liquid chromatography (HPLC), and its antimicrobial activity and minimum inhibitory concentrations (MICs) were evaluated against 10 intestinal pathogenic gram-positive and negative bacteria. The results revealed that the isolated prodigiosin exhibited high antimicrobial activity against Listeria monocytogenes, Bacillus cereus, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, and Vibrio parahaemolyticus; further, the isolated prodigiosin showed minimum inhibitory concentrations (MICs) between $3{\mu}g/ml$ and 30 mg/ml, but they were not active against Bacillus subtilis, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli. In conclusion, prodigiosin isolated from Serratia sp. $PDGS^{120915}$ showed high antimicrobial activity against intestinal pathogenic bacteria and has potential applications in the development of new antimicrobial agents.

Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium

  • Eom, Jeong Seon;Song, Jin;Choi, Hye Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.479-491
    • /
    • 2015
  • Lactobacillus species have been shown to enhance intestinal epithelial barrier function, modulate host immune responses, and suppress the growth of pathogenic bacteria, yeasts, molds, and viruses. Thus, lactobacilli have been used as probiotics for treating various diseases, including intestinal disorders, and as biological preservatives in the food and agricultural industries. However, the molecular mechanisms used by lactobacilli to suppress pathogenic bacterial infections have been poorly characterized. We previously isolated Lactobacillus plantarum JSA22 from buckwheat sokseongjang, a traditional Korean fermented soybean food, which possessed high enzymatic, fibrinolytic, and broad-spectrum antimicrobial activity against foodborne pathogens. In this study, we investigated the effects of L. plantarum JSA22 on the growth of S. Typhimurium and S. Typhimurium-induced cytotoxicity by stimulating the host immune response in intestinal epithelial cells. The results showed that coincubation of S. Typhimurium and L. plantarum JSA22 with intestinal epithelial cells suppressed S. Typhimurium infection, S. Typhimurium-induced NF-κB activation, and IL-8 production, and lowered the phosphorylation of both Akt and p38. These data indicated that L. plantarum JSA22 has probiotic properties, and can inhibit S. Typhimurium infection of intestinal epithelial cells. Our findings can be used to develop therapeutic and prophylactic agents against pathogenic bacteria.

Inhibitory Effect on the Growth of Intestinal Pathogenic Bacteria by Kimchi Fermentation (김치 발효에 의한 장내병원균의 생육저해효과)

  • Kang, Chang-Hoon;Chung, Kyung-Oan;Ha, Duk-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.480-486
    • /
    • 2002
  • Six strains of intestinal pathogenic bacteria were inoculated into kimchi at the preparation time, and the influence of kimchi fermentation on the growth of these pathogenic bacteria was investigated. The population of coliform bacteria in the kimchi raw materials, and its changes in the kimchi sample during fermentation were also determined. Among the raw materials, highest populations of coliform bacteria were detected in ginger and green onion, followed by Chinese cabbage, red pepper, and garlic. Populations of pathogenic bacteria (inoculated strains) and coliform bacteria in kimchi decreased as pH decreased with fermentation. Coliform bacteria disappeared at pH 3.9 in Chinese cabbage kimchi samples. Clostridium perfringens ATCC 13124, Listeria monocytogenes ATCC 19111, Salmonella typhimurium KCTC 1625, Staphylococcus aureus KCTC 1621, Vibrio parahamolyticus ATCC 27519, and Escherichia coli O157 H:7 ATCC 43894 were not detected at pH values less than 4.1, 3.7, 3.8, 3.8, 3.7, and 3.7 in Chinese cabbage kimchi, and at pH values less than 4.5, 4.0, 4.2, 4.2, 4.2 and 4.1 in mustard leaf kimchi, respectively. The juice of mustard leaf and allyl isothiocyanate exhibited high antimicrobial activities on the pathogenic bacteria, whereas the lowest on lactic acid bacteria. These results indicated that fermentation is useful to improve the safety of kimchi, and the antimicrobial effect of mustard leaf kimchi is mainly due to the major pungent compound of mustard leaf, allyl isothiocyanate.

Colony Count with Mixed Culture of Enteric Bacteria by in vitro Quantitative Method (장내세균의 시간차 혼합배양이 보여주는 균수측정의 비교)

  • 황선철;전보성
    • Korean Journal of Microbiology
    • /
    • v.11 no.4
    • /
    • pp.175-180
    • /
    • 1973
  • This study was attempted to see more clear relationships among the enterobacteria, especially between the intestinal normal flora and pathogenic bacteria. It has been known that some intestinal normal flora produce the bactrial metabolites that are harmful to other enteric bacteria. One of the metabolites is known as colicin, the protein fraction, which possesses certain degree of inhibitory effect against other bacterial growth fraction, whih possesses certain degree of inhibitory effect against other bacterial growth. As a preliminary study for a colicin purification, the antagonistic effect of E, coli to groups of Salmonella and Shigella has been studied by means of in vitro quantitative culture method. 1. E.coli showed definite inhibitory effects aganist both Salmonella and Shigella groups in the mixture of two organisms. 2. The inhibitory effects of E.coli in the E.coli-Salmonella and the E.coli-Shigella mixture occurred from 4 hours incubation following the inoculation. 3. Even the complete inhibition of pathogenic enteric bacterial growth was noticed in the E.coli-Salmonella mixture at overnight incubation. 4. Among the diluted mixtures, 1:100, 1:1,000, and 1:10,000, survival rate of pathogenic enteric bacteria in the mixtures with E.coli showed least affected at the 1:1,000 dilution. 5. It was found that the antagonistic effect aganist groups of Salmonella-shigella was depending upon the groups of the genera.

  • PDF

Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential

  • Hwanhlem, Noraphat;Salaipeth, Lakha;Charoensook, Rangsun;Kanjan, Pochanart;Maneerat, Suppasil
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.355-364
    • /
    • 2022
  • From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39℃, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.

An updated review on probiotics as an alternative of antibiotics in poultry - A review

  • Yaqoob, Muhammad Umar;Wang, Geng;Wang, Minqi
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1109-1120
    • /
    • 2022
  • Antibiotics used to be supplemented to animal feeds as growth promoter and as an effective strategy to reduce the burden of pathogenic bacteria present in the gastro-intestinal tract. However, in-feed antibiotics also kill bacteria that may be beneficial to the animal. Secondly, unrestricted use of antibiotics enhanced the antibiotic resistance in pathogenic bacteria. To overcome above problems, scientists are taking a great deal of measures to develop alternatives of antibiotics. There is convincing evidence that probiotics could replace in-feed antibiotics in poultry production. Because they have beneficial effects on growth performance, meat quality, bone health and eggshell quality in poultry. Better immune responses, healthier intestinal microflora and morphology which help the birds to resist against disease attack were also identified with the supplementation of probiotics. Probiotics establish cross-feeding between different bacterial strains of gut ecosystem and reduce the blood cholesterol level via bile salt hydrolase activity. The action mode of probiotics was also updated according to recently published literatures, i.e antimicrobial substances generation or toxin reduction. This comprehensive review of probiotics is aimed to highlight the beneficial effects of probiotics as a potential alternative strategy to replace the antibiotics in poultry.

Isolation and Identification of Lactic Acid Bacteria Inhibiting Gastro-intestinal Pathogenic Bacteria of Domestic Animal. (가축 소화기 병원성 세균을 저해하는 유산균의 분리 및 동정)

  • Lee, Jae-Yeon;Hwang, Kyo-Yeol;Kim, Hyun-Soo;Kim, Geun;Sung, Soo-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • To isolate probiotic lactic acid bacteria having superior inhibitory activities against animal gastro-intestinal pathogenic bacteria such as Salmonella gallinarum, Staphylococcus aureus and Escherichia coli, 130 strains were initially isolated from the small intestines of Korean native chickens and 7 lactic acid bacteria were finally selected. By using API CHL kit and 16S rRNA sequencing method, the selected lactic acid bacteria were found to be belonged to genus Lactobacillus except BD14 identified as Pediococcus pentosaceus. Especially, Lactobacillus pentosus K34 showed the highest resistancy to both of HCl and bile salt, as well as the highest inhibitory activities against S. gallinarum, S. aureus and E. coli. All the selected strains were sensitive to various antibiotics such as neomycin, erythromycin, cephalosporin, amoxicillin/clavulanic acid, ampicillin, oxytetracycline, but resistant to ciprofloxacin. All the selected strains except BL strain were resistant to colistin and streptomycin, and BD14, BD16, K34 strains were resistant to gentamicin.

Value of clay as a supplement to swine diets

  • Mun, Daye;Lee, Jongmoon;Choe, Jeehwan;Kim, Byeonghyeon;Oh, Sangnam;Song, Minho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The use of practical management factors to maximize pig health improvement cannot guarantee freedom from diseases. Moreover, because of health safety concerns, the use of antibiotics has been restricted in livestock, including pigs. Therefore, the swine industry has been looking for various alternatives to antibiotics to improve pig's health and performance. Clay is a dietary factor generally accepted for improving pig health. It is a naturally occurring material and is primarily composed of fine-grained minerals. It has a specific structure with polar attraction. Because of this structure, clay has the ability to lose or gain water reversibly. In addition, clay has beneficial physiological activities. First, clay has anti-diarrheic and antibacterial effects by penetrating the cell wall of bacteria or inhibiting their metabolism. Second, it can protect the intestinal tract by absorbing toxins, bacteria, or even viruses. When added to the diet, clay has also been known to bind some mycotoxins, which are toxic secondary metabolites produced by fungi, namely in cereal grains. Those beneficial effects of clay can improve pigs' health and performance by reducing pathogenic bacteria, especially pathogenic Escherichia coli, in the intestinal tract. Therefore, it is suggested that clay has a remarkable potential as an antibiotics alternative.

Screening of Bifidobacteria for the Development of Probiotics Inhibiting Intestinal Pathogenic Bacteria (장내 유해세균을 억제하는 양돈용 프로바이오틱스 개발을 위한 비피도박테리아 탐색)

  • Lee, Jaeyeon;Shin, Yungoh;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.211-218
    • /
    • 2014
  • In order to isolate probiotic lactic acid bacteria possessing high inhibitory activities against porcine and zoonotic pathogens, such as enterotoxigenic E. coli, Salmonella Typhimurium, and Clostridium perfringens, a total of 65 anaerobic strains were initially isolated from a variety of sources including cattle rumen fluids, chicken intestines and swine feces. Four Bifidobacterium strains were selected for their high anti-pathogenic bacterial activities. By using the 16S rDNA sequencing method, three B. boum strains and one B. thermophilum were identified. B. thermophilum demonstrated the best adhesive ability to epithelial cells of swine intestine among the isolates. Indeed, B. thermophilum was seen to have superior characteristics as a probiotic for swine, as judged by their high growth inhibitory activities against various pathogens, and high acid- and bile-tolerance.

Antibacterial Activities of B. polyfermenticus SCD Against Pathogenic Bacteria and Effects on Animals and Humans (Bacillus polyfermenticus SCD의 병원성 세균에 대한 항균성과 동물 및 임상에 미치는 영향)

  • 강재선;전경동;김원석;조우성;권주열;문경호
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.70-74
    • /
    • 2004
  • Bacillus polyfermenticus SCD which is commonly called as Bisroot (equation omitted) has been appropriately used for the treatment of long-term intestinal disorder's. This strain strongly inhibited against methicillin resistance Staphylococcus aureus (MRSA) and various pathogenic microorganisms. Effects of B. polyfermentius SCD administration on death rates and egg-laying rates in two groups of hens were investigated. This strain decreased the death rates of two groups by 16.26% and 11.72%, respectively. Also this strain increased the egg-laying rates of those 2.74% and 2.66%, respectively Clinical tests of B. polyfermenticus SCD administration to healthy adults showed not adverse effects but decreased glyceride concentration from 154.52 mg/dl to 135.41 mg/dl after two week administrations.