• Title/Summary/Keyword: intestinal lactic acid bacteria

Search Result 176, Processing Time 0.035 seconds

Immunomodulatory Effects of Lactic Acid Bacteria and Bioactive Peptides Derived from Milk (유산균과 유단백질 유래 Peptide의 면역 조절 기능 연구 동향)

  • Kim, Cherl-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • The mammalian immune system comprises a complex array of cells and molecules that interact to provide protection from pathogenic microorganisms. The beneficial role played by lactic acid bacteria and milk-derived peptides in humans, including their effect on the immune system, has been extensively reported. Lactic acid bacteria and milk-derived peptides, which are present in dairy products, are frequently used as nutraceuticals to improve some biological functions in the host. Activation of the systemic and secretory immune response by lactic acid bacteria and milk-derived peptides requires many complex interactions among the various constituents of the intestinal ecosystem. Thus, the aim of this review was to examine in detail the immunological potential of lactic acid bacteria and milk-derived peptides.

  • PDF

Bifidogenic Effects of Yaksun (functional herbal) Food Materials (약선식품소재의 유산균 증식 효과)

  • 배은아;한명주
    • Korean journal of food and cookery science
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • The objective of this study was to evaluate the effect of functional herbal foods on the growth of intestinal lactic acid bacteria. When Bifidobacterium breve and human intestinal microflora were inoculated in the general anaerobic medium which contained each functional food water extract, most of functional herbal foods induced the growth of lactic acid bacteria by decreasing pH of the broth. The pH decreasing effects of Liriipe platyphylla and Platycodon grandiflorum were excellent. The growth of lactic acid bacteria effectively inhibited the bacterial enzymes, $\beta$-glucosidase and $\beta$ -glucuronidase. Eugenia caryophyllata and Liriipe platyphylla potently inhibited the productivity of P -glucosidase of B. breve and human intestinal bacteria. Cinnamomum cassia, Gardenia jasminoides and Platycodon grandiflorum potently inhibited the productivity of $\beta$-glucuronidase of human intestinal bacteria. The growth component isolated from Platycodon grandiflorum was sucrose (compound B).

  • PDF

Prebiotics: A Review (프리바이오틱스의 기능에 관한 연구 고찰)

  • Yoon, Jin A;Shin, Kyung-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.191-202
    • /
    • 2017
  • This study was conducted to investigate the characteristics of major prebiotics and the related studies, and to provide basic data for future research. Prebiotics are defined as 'nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improve host health'. Well-known prebiotics are inulin, oligofructose, and galacto-oligosaccharide. Prebiotics assist in the health activity of lactic acid bacteria by acting as a substrate for lactic acid bacteria, with their unique physical and chemical properties. Bifidobacteria are known to be beneficial bacteria that prevent intestinal inflammation, maintain intestinal microflora balance, inhibit carcinogenesis, reduce cholesterol, and enhance immunity. However, Bifidobacteria, Lactobacillus, Bacillus, and Weissella are also found in animal-based fermented foods such as milk, cheese, yogurt, and salted fish. Prebiotics can act as a substrate for lactic acid bacteria, helping the activity of lactic acid bacteria and improving health. Therefore, the authors suggest that investigation into the category and effectiveness of prebiotics should be extended in the future through research.

A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria (김치 및 김치 유래 유산균의 건강 기능성에 대한 연구 동향 조사)

  • Kim, Bohkyung;Mun, Eun-Gyung;Kim, Doyeon;Kim, Young;Park, Yongsoon;Lee, Hae-Jeung;Cha, Youn-Soo
    • Journal of Nutrition and Health
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: This review article provides an overview of the trends of research papers on the health benefits of kimchi and kimchi lactic acid bacteria published from 1995 to 2017. Methods: All publications from 1995 to 2017 regarding kimchi and kimchi lactic acid bacteria were collected, reviewed, and classified. This review article covers the publications of the health benefits of kimchi and kimchi lactic acid bacteria on experimental, clinical trials, and epidemiology studies. Results: The number of publications on kimchi over the period were 590: 385 publications in Korean and 205 publications in English. The number of publications on the health benefits of kimchi and kimchi lactic acid bacteria were 95 in Korean and 54 in English. The number of publications on kimchi and kimchi lactic acid bacteria were 84 and 38, respectively, in the experimental models. Ten research papers on kimchi in clinical trials and 7 publications in epidemiology were found. Kimchi or kimchi lactic acid bacteria had protective effects against oxidative stress, mutagenicity, toxicity, cancer, dyslipidemia, hypertension, immunity, and inflammation in in vitro, cellular, and in vivo animal models. Moreover, kimchi had effects on the serum lipids, intestinal microbiota, iron status, obesity, and metabolic parameters in human clinical trials. In epidemiology, kimchi had effects on hypertension, asthma, atopic dermatitis, rhinitis, cholesterol levels, and free radicals. Conclusion: This review focused on the publications regarding the health benefits of kimchi and kimchi lactic acid bacteria, suggesting the future directions of studies about kimchi and kimchi lactic acid bacteria by producing a database for an evaluation of the health benefits of kimchi.

Adhesion Properties of Indigenous Dadih Lactic Acid Bacteria on Human Intestinal Mucosal Surface

  • Dharmawan, Jorry;Surono, Ingrid S.;Kun, Lee Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.751-755
    • /
    • 2006
  • Dadih is Indonesian traditional fermented buffalo milk believed by the natives to have beneficial effects on human health. This may be due to the probiotic properties possessed by the lactic acid bacteria (LAB) involved in its fermentation process. It was discovered that ten strains of dadih lactic isolates possessed some probiotic properties in vitro. In this study, the adhesion properties of dadih LAB, in comparison with documented probiotic strains, were investigated in vitro by using mucin extracted from human faeces and Caco-2 cells as the models for human intestinal mucosal surface and intestinal cells respectively. The adhesion results showed the distinction of Lactobacillus reuteri IS-27560 in adhering to both mucus layer and Caco-2 cells. The competition assay for adhesion to the mucus layer between dadih LAB and selected pathogens indicated the competence of Lactococcus lactis IS-16183 and Lactobacillus rhamnosus IS-7257 in significantly inhibiting the adhesion of Escherichia coli O157:H7. Accordingly, these two strains may be potential candidates for use as probiotic strains. Overall, the adhesion properties of all dadih LAB strains were relatively comparable to that of Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, the documented probiotic strains.

Hygienic Superiority of Kimchi (김치의 위생학적 우수성)

  • Kim, Yong-Suk;Shin, Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • Kimchi is a representative traditional food in Korea and a type of vegetable product that is the unique complex lactic acid fermentation in the world. It can be considered as a unique fermented food generated by various flavors, which are not included in raw materials, that can be generated by mixing and fermenting various spices and seasonings, such as red pepper powder, garlic, ginger, and salted fish, added to Chinese cabbages. Functionalities in Kimchi have been approved through several studies and the probiotic function that is mainly based on lactic acid bacteria including their physical functions in its contents has also verified. Studies on the verification of the safety of Kimchi including its physiological functions have been conducted. In particular, the function of lactic acid bacteria, which is a caused of the fermentation of Kimchi. Although the lactic acid bacteria contributed to the fermentation of Kimchi is generated from raw and sub-materials, the lactic acid bacteria attached on Chinese cabbages has a major role in the process in which the fermentation temperature and dominant bacteria are also related to the process. The salt used in a salt pickling process inhibits the growth of the putrefactive and food poisoning bacteria included in the fermentation process of Kimchi and of other bacteria except for such lactic acid bacteria due to the lactic acid and several antimicrobial substances generated in the fermentation process, such as bacteriocin and hydrogen peroxide. In addition, the carbon dioxide gas caused by heterolactic acid bacteria contributes to the inhibition of aerobic bacteria. Furthermore, special ingredients included in sub-materials, such as garlic, ginger, and red pepper powder, contribute to the inhibition of putrefactive and food poisoning bacteria. The induction of the change in the intestinal bacteria as taking Kimchi have already verified. In conclusion, Kimchi has been approved as a safety food due to the fact that the inhibition of food poisoning bacteria occurs in the fermentation process of Kimchi and the extinction of such bacteria.

Isolation and Identification of Lactic Acid Bacteria Inhibiting Gastro-intestinal Pathogenic Bacteria of Domestic Animal. (가축 소화기 병원성 세균을 저해하는 유산균의 분리 및 동정)

  • Lee, Jae-Yeon;Hwang, Kyo-Yeol;Kim, Hyun-Soo;Kim, Geun;Sung, Soo-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • To isolate probiotic lactic acid bacteria having superior inhibitory activities against animal gastro-intestinal pathogenic bacteria such as Salmonella gallinarum, Staphylococcus aureus and Escherichia coli, 130 strains were initially isolated from the small intestines of Korean native chickens and 7 lactic acid bacteria were finally selected. By using API CHL kit and 16S rRNA sequencing method, the selected lactic acid bacteria were found to be belonged to genus Lactobacillus except BD14 identified as Pediococcus pentosaceus. Especially, Lactobacillus pentosus K34 showed the highest resistancy to both of HCl and bile salt, as well as the highest inhibitory activities against S. gallinarum, S. aureus and E. coli. All the selected strains were sensitive to various antibiotics such as neomycin, erythromycin, cephalosporin, amoxicillin/clavulanic acid, ampicillin, oxytetracycline, but resistant to ciprofloxacin. All the selected strains except BL strain were resistant to colistin and streptomycin, and BD14, BD16, K34 strains were resistant to gentamicin.

Accumulation of Aluminum to Lactic Acid Bacteria under Anaerobic Conditions (혐기조건하 젖산균에서 알루미늄의 축적)

  • 박성수
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.600-605
    • /
    • 1998
  • Present study was investigate to evaluate the aluminum absorption effect on lactic acid bacteria(Lactobacillus acidophilus ATTC 4356, Lactogacillus bulgaricus ATTC 11842, Lactobacillus casei IFO 3533, and Streptococcus thermophilus KCTC 2185 ; LAB) and Clostridium perfringens ATCC 3627 (CP) in artificial intestinal tract. Their growth rate, aluminum accumulation and cellular distribution was studied under anaerobic broth system. All of above microbes were inhibited by adding 10 to 100ppm of aluminum. The degree of aluminum in LAB (Lactobacillus acidophilus ATCC 4356, Lactobacillus bulgaricus ATCC 11842, Lactobacillus casei IFO 3533, and Streptococcus thermophilus KCTC 2185) was higher than of CP. The largest amount of aluminum was accumulated in Lactobacillus bulgaricus ATCC 11842. Aluminum accumulation in LAB was distributed in 49.1% at cell wall, 27.3% at plasma membrane, and 23.6% at cytoplasm, respectively. This study suggests that LAB might help to eliminate the ingested aluminum in intestinal tract.

  • PDF

Glycosaminoglycan Degradation-Inhibitory Lactic Acid Bacteria Ameliorate 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

  • Lee, Bo-Mi;Lee, Jung-Hee;Lee, Hye-Sung;Bae, Eun-Ah;Huh, Chul-Sung;Ahn, Young-Tae;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.616-621
    • /
    • 2009
  • To evaluate the effects of lactic acid bacteria (LAB) in inflammatory bowel diseases (IBD), we measured the inhibitory effect of several LAB isolated from intestinal microflora and commercial probiotics against the glycosaminoglycan (GAG) degradation by intestinal bacteria. Bifidobacterium longum HY8004 and Lactobacillus plantarum AK8-4 exhibited the most potent inhibition. These LAB inhibited colon shortening and myeloperoxidase production in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitic mice. These LAB also blocked the expression of the proinflammatory cytokines, IL-$1{\beta}$ and TNF-$\alpha$, as well as of COX-2, in the colon. LAB also blocked activation of the transcription factor, NF-${\kappa}B$, and expression of TLR-4 induced by TNBS. In addition, LAB reduced the TNBS-induced bacterial degradation activities of chondroitin sulfate and hyaluronic acid. These findings suggest that GAG degradation-inhibitory LAB may improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-${\kappa}B$ activation and by inhibiting intestinal bacterial GAG degradation.

Cholesterol-Lowering Effect and Anticancer Activity of Kimchi and Kimchi Ingredients (김치와 김치재료의 콜레스테롤 저하 및 항암효과)

  • 이재준;정영기
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.743-752
    • /
    • 1999
  • The purpose of the paper is to explore the current knowledge on the nutritional evaluation, cholesterol-lowering effect and antitumor activity of kimchi and its ingredients(Korean cabbage, garlic, red pepper powder, ginger and onion). Kimchi contains high contents of nutrients such as vitamins(ascorbic acid, $\beta$-carotene and vitamin B complex), minerals(calcium, potassium, iron and phosphorous), essential amino acids and dietary fiber. Kimch also contains high levels of lactic acid bacteria, allicin, capsaicin, organic acid, phenol compounds, flavonoid and sulfur compounds. The dietary fiber and lactic acid bacteria isolated from kimchi are effective in improving intestinal microflora of human. Isoluble dietary fiber shows anticancer activity, but soluble dietary fiber shows hypocholesterolemic effect. Lactic acid bacteria isolated from kimchi acts as a hypocholesterolemic or anticancer agent. A major ingredient of kimchi is mainly cruciferous and allium family vegetables, which were also reported to prevent cancer and atherosclerosis. It is suggested that kimchi is important not only as one of the traditional fermented Korean food but also as therapeutic agent for carcinogenesis and hypercholesterolemic state.

  • PDF