• Title/Summary/Keyword: intervertebral cage

Search Result 27, Processing Time 0.021 seconds

The Effect of Hounsfield Unit Value with Conventional Computed Tomography and Intraoperative Distraction on Postoperative Intervertebral Height Reduction in Patients Following Stand-Alone Anterior Cervical Discectomy and Fusion

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung;Woo, Joon Bum;Kim, Young Ha
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.96-106
    • /
    • 2022
  • Objective : The most common complication of anterior cervical discectomy and fusion (ACDF) is cage subsidence and maintenance of disc height affects postoperative clinical outcomes. We considered cage subsidence as an inappropriate indicator for evaluating preservation of disc height. Thus, this study aimed to consider patients with complications such as reduced total disc height compared to that before surgery and evaluate the relevance of several factors before ACDF. Methods : We retrospectively reviewed the medical records of 40 patients who underwent stand-alone single-level ACDF using a polyetheretherketone (PEEK) cage at our institution between January 2012 and December 2018. Our study population comprised 19 male and 21 female patients aged 24-70 years. The minimum follow-up period was 1 year. Twenty-seven patients had preoperative bone mineral density (BMD) data on dual-energy X-ray absorptiometry. Clinical parameters included sex, age, body mass index, smoking history, and prior medical history. Radiologic parameters included the C2-7 cobb angle, segmental angle, sagittal vertical axis, disc height, and total intervertebral height (TIH) at the preoperative and postoperative periods. Cage decrement was defined as the reduction in TIH at the 6-month follow-up compared to preoperative TIH. To evaluate the bone quality, Hounsfield unit (HU) value was calculated in the axial and sagittal images of conventional computed tomography. Results : Lumbar BMD values and cervical HU values were significantly correlated (r=0.733, p<0.001). We divided the patients into two groups based on cage decrement, and 47.5% of the total patients were regarded as cage decrement. There were statistically significant differences in the parameters of measuring the HU value of the vertebra and intraoperative distraction between the two groups. Using these identified factors, we performed a receiver operating characteristic (ROC) curve analysis. Based on the ROC curve, the cut-off point was 530 at the HU value of the upper cortical and cancellous vertebrae (p=0.014; area under the curve [AUC], 0.727; sensitivity, 94.7%; specificity, 42.9%) and 22.41 at intraoperative distraction (p=0.017; AUC, 0.722; sensitivity, 85.7%; specificity, 57.9%). Using this value, we converted these parameters into a bifurcated variable and assessed the multinomial regression analysis to evaluate the risk factors for cage decrement in ACDF. Intraoperative distraction and HU value of the upper vertebral body were independent factors of postoperative subsidence. Conclusion : Insufficient intraoperative distraction and low HU value showed a strong relationship with postoperative intervertebral height reduction following single stand-alone PEEK cage ACDF.

Subsidence of Cylindrical Cage ($AMSLU^{TM}$ Cage) : Postoperative 1 Year Follow-up of the Cervical Anterior Interbody Fusion

  • Joung, Young-Il;Oh, Seong-Hoon;Ko, Yong;Yi, Hyeong-Joong;Lee, Seung-Ku
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.367-370
    • /
    • 2007
  • Objective : There are numerous reports on the primary stabilizing effects of the different cervical cages for cervical radiculopathy. But, little is known about the subsidence which may be clinical problem postoperatively. The goal of this study is to evaluate subsidence of cage and investigate the correlation between radiologic subsidence and clinical outcome. Methods : To assess possible subsidence, the authors investigated clinical and radiological results of the one-hundred patients who underwent anterior cervical fusion by using $AMSLU^{TM}$ cage during the period between January 2003 and June 2005. Preoperative and postoperative lateral radiographs were measured for height of intervertebral disc space where cages were placed intervertebral disc space was measured by dividing the sum of anterior, posterior, and midpoint interbody distance by 3. Follow-up time was 6 to 12 months. Subsidence was defined as any change in at least one of our parameters of at least 3 mm. Results : Subsidence was found in 22 patients (22%). The mean value of subsidence was 2.21 mm, and mean subsidence rate was 22%. There were no cases of the clinical status deterioration during the follow-up period No posterior or anterior migration was observed. Conclusion : The phenomenon of subsidence is seen in substantial number of patients. Nevertheless, clinical and radiological results of the surgery were favorable. An excessive subsidence may result in hardware failure. Endplate preservation may enables us to control subsidence and reduce the number of complications.

Anterior Lumbar Interbody Fusion with Stand-Alone Interbody Cage in Treatment of Lumbar Intervertebral Foraminal Stenosis : Comparative Study of Two Different Types of Cages

  • Cho, Chul-Bum;Ryu, Kyeong-Sik;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.5
    • /
    • pp.352-357
    • /
    • 2010
  • Objective : This retrospective study was performed to evaluate the clinical and radiological results of anterior lumbar interbody fusion (ALIF) using two different stand-alone cages in the treatment of lumbar intervertebral foraminal stenosis (IFS). Methods : A total of 28 patients who underwent ALIF at L5-S1 using stand-alone cage were studied [Stabilis$^{(R)}$ (Stryker, Kalamazoo, MI, USA); 13, SynFix-LR$^{(R)}$ (Synthes Bettlach, Switzerland); 15]. Mean follow-up period was 27.3 ${\pm}$ 4.9 months. Visual analogue pain scale (VAS) and Oswestry disability index (ODI) were assessed. Radiologically, the change of disc height, intervertebral foraminal (IVF) height and width at the operated segment were measured, and fusion status was defined. Results : Final mean VAS (back and leg) and ODI scores were significantly decreased from preoperative values (5.6 ${\pm}$ 2.3 ${\rightarrow}$ 2.3 ${\pm}$ 2.2, 6.3 ${\pm}$ 3.2 ${\rightarrow}$1.6 ${\pm}$ 1.6, and 53.7 ${\pm}$ 18.6 ${\rightarrow}$ 28.3 ${\pm}$ 13.1, respectively), which were not different between the two devices groups. In Stabilis$^{(R)}$ group, postoperative immediately increased disc and IVF heights (10.09 ${\pm}$ 4.15 mm ${\rightarrow}$ 14.99 ${\pm}$ 1.73 mm, 13.00 ${\pm}$ 2.44 mm ${\rightarrow}$ 16.28 ${\pm}$ 2.23 mm, respectively) were gradually decreased, and finally returned to preoperative value (11.29 ${\pm}$ 1.67 mm, 13.59 ${\pm}$ 2.01 mm, respectively). In SynFix-LR$^{(R)}$ group, immediately increased disc and IVF heights (9.60 ${\pm}$ 2.82 mm ${\rightarrow}$ 15.61 ${\pm}$ 0.62 mm, 14.01 ${\pm}$ 2.53 mm ${\rightarrow}$ 21.27 ${\pm}$ 1.93 mm, respectively) were maintained until the last follow up (13.72 ${\pm}$ 1.21 mm, 17.87 ${\pm}$ 2.02 mm, respectively). The changes of IVF width of each group was minimal pre- and postoperatively. Solid arthrodesis was observed in 11 patients in Stabilis group (11/13, 84.6%) and 13 in SynFix-LR$^{(R)}$ group (13/15, 86.7%). Conclusion : ALIF using stand-alone cage could assure good clinical results in the treatment of symptomatic lumbar IFS in the mid-term follow up. A degree of subsidence at the operated segment was different depending on the device type, which was higher in Stabilis$^{(R)}$ group.

Fusion Criteria for Posterior Lumbar Interbody Fusion with Intervertebral Cages : The Significance of Traction Spur

  • Kim, Kyung-Hoon;Park, Jeong-Yoon;Chin, Dong-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.328-332
    • /
    • 2009
  • Objective : The purpose of this study was to establish new fusion criteria to complement existing Brantigan-Steffee fusion criteria. The primary purpose of intervertebral cage placement is to create a proper biomechanical environment through successful fusion. The existence of a traction spur is an essential predictable radiologic factor which shows that there is instability of a fusion segment. We studied the relationship between the existence of a traction spur and fusion after a posterior lumbar interbody fusion (PLIF) procedure. Methods : This study was conducted using retrospective radiological findings from patients who underwent a PLIF procedure with the use of a cage without posterior fixation between 1993 and 1997 at a single institution. We enrolled 183 patients who were followed for a minimum of five years after the procedure, and used the Brantigan-Steffee classification to confirm the fusion. These criteria include a denser and more mature bone fusion area than originally achieved during surgery, no interspace between the cage and the vertebral body, and mature bony trabeculae bridging the fusion area. We also confirmed the existence of traction spurs on fusion segments and non-fusion segments. Results : The PLIF procedure was done on a total of 251 segments in 183 patients (71 men and 112 women). The average follow-up period was $80.4{\pm}12.7$ months. The mean age at the time of surgery was $48.3{\pm}11.3$ years (range, 25 to 84 years). Among the 251 segments, 213 segments (84.9%) were fused after five years. The remaining 38 segments (15.1%) were not fused. An analysis of the 38 segments that were not fused found traction spur formation in 20 of those segments (52.6%). No segments had traction spur formation with fusion. Conclusion : A new parameter should be added to the fusion criteria. These criteria should be referred to as 'no traction spur formation' and should be used to confirm fusion after a PLIF procedure.

Effect of Cage in Radiological Differences between Direct and Oblique Lateral Interbody Fusion Techniques

  • Ko, Myeong Jin;Park, Seung Won;Kim, Young Baeg
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.432-441
    • /
    • 2019
  • Objective : Few studies have reported direct comparative data of lumbar spine angles between direct lateral interbody fusion (DLIF) and oblique lateral interbody fusion (OLIF). The purpose of this study was to investigate the clinical and radiological outcomes of DLIF and OLIF, and determine influential factors. Methods : The same surgeon performed DLIF from May 2011 to August 2014 (n=201) and OLIF from September 2014 to September 2016 (n=142). Radiological parameters, cage height, cage angle (CA), cage width (CW), and cage location were assessed. We checked the cage location as the distance (mm) from the anterior margin of the disc space to the anterior metallic indicator of the cage in lateral images. Results : There were significant differences in intervertebral foramen height (FH; $22.0{\pm}2.4$ vs. $21.0{\pm}2.1mm$, p<0.001) and sagittal disc angle (SDA; $8.7{\pm}3.3$ vs. $11.3{\pm}3.2^{\circ}$, p<0.001) between the DLIF and OLIF groups at 7 days postoperatively. CA ($9.6{\pm}3.0$ vs. $8.1{\pm}2.9^{\circ}$, p<0.001) and CW ($21.2{\pm}1.6$ vs. $19.2{\pm}1.9mm$, p<0.001) were significantly larger in the OLIF group compared to the DLIF group. The cage location of the OLIF group was significantly more anterior than the DLIF group ($6.7{\pm}3.0$ vs. $9.1{\pm}3.6mm$, p<0.001). Cage subsidence at 1 year postoperatively was significantly worse in the DLIF group compared to the OLIF group ($1.0{\pm}1.5$ vs. $0.4{\pm}1.1mm$, p=0.001). Cage location was significantly correlated with postoperative FH (${\beta}=0.273$, p<0.001) and postoperative SDA (${\beta}=-0.358$, p<0.001). CA was significantly correlated with postoperative FH (${\beta}=-0.139$, p=0.044) and postoperative SDA (${\beta}=0.236$, p=0.001). Cage location (${\beta}=0.293$, p<0.001) and CW (${\beta}=-0.225$, p<0.001) were significantly correlated with cage subsidence. Conclusion : The cage location, CA, and CW seem to be important factors which result in the different-radiological outcomes between DLIF and OLIF.

Radiologic Assessment of Subsidence in Stand-Alone Cervical Polyetheretherketone (PEEK) Cage

  • Ha, Sung-Kon;Park, Jung-Yul;Kim, Se-Hoon;Lim, Dong-Jun;Kim, Sang-Dae;Lee, Sang-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.6
    • /
    • pp.370-374
    • /
    • 2008
  • Objective : Aim of study was to find a proper method for assessing subsidence using a radiologic measurement following anterior cervical discectomy and fusion (ACDF) with stand-alone polyetheretherketone (PEEK), $Solis^{TM}$ cage. Methods : Forty-two patients who underwent ACDF with $Solis^{TM}$ cage were selected. With a minimum follow-up of 6 months, the retrospective investigation was conducted for 37 levels in 32 patients. Mean follow-up period was 18.9 months. Total intervertebral height (TIH) of two fused vertebral bodies was measured on digital radiographs with built-in software. Degree of subsidence (${\Delta}TIH$) was reflected by the difference between the immediate postoperative and follow-up TIH. Change of postoperative disc space height (CT-MR ${\Delta}TIH$) was reflected by the difference between TIH of the preoperative mid-sagittal 2D CT and that of the preoperative mid-sagittal T1-weighted MRI. Results : Compared to preoperative findings, postoperative disc height was increased in all cases and subsidence was observed only in 3 cases. For comparison of subsidence and non-subsidence group, TIH and CT-MR ${\Delta}TIH$ of each group were analyzed. There was no statistically significant difference in TIH and CT-MR ${\Delta}TIH$ between each group at 4 and 8 weeks, but a difference was observed at the last follow-up TIH (p=0.0497). Conclusion : ACDF with $Solis^{TM}$ cage was associated with relatively good radiologic long-term results. Fusion was achieved in 94.5% and subsidence occurred in 8.1% by the radiologic assessment. Statistical analysis reveals that the subsidence seen later than 8 weeks after surgery and the development of subsidence does not correlate statistically with the change of the postoperative disc space height.

What are the Differences in Outcome among Various Fusion Methods of the Lumbar Spine?

  • Kang, Suk-Hyung;Kim, Young-Baeg;Park, Seung-Won;Hong, Hyun-Jong;Min, Byung-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.1
    • /
    • pp.39-43
    • /
    • 2005
  • Objective: For Posterior lumbar interbody fusion(PLIF) various cages or iliac bone dowels are used with or without pedicle screw fixation(PSF). To evaluate and compare the clinical and radiological results of different fusion methods, we intend to verify the effect of added PSF on PLIF, the effect of bone cages and several factors which are thought to be related with the postoperative prognosis. Methods: One hundred and ninety seven patients with lumbar spinal stenosis and instability or spondylolisthesis underwent various fusion operations from May 1993 to May 2003. The patients were divided into five groups, group A (PLIF with autologous bone dowels, N=24), group B (PLIF with bone cages, N=13), group C (PLIF with bone dowels and PSF, N=37), group D (PLIF with bone cages and PSF, N=30) and group E (PSF with intertransverse bone graft, N=93) for comparison and analyzed for the outcome and fusion rate. Results: Outcome was not significantly different among the five groups. In intervertebral height (IVH) changes between pre- and post-operation, Group B ($2.42{\pm}2.20mm$) was better than Group A ($-1.33{\pm}2.05mm$). But in the Group C, D and E, the IVH changes were not different statistically. Fusion rate of group C, D was higher than that of Group A and B. But the intervertebral height(IVH) increased significantly in group B($2.42{\pm}2.20mm$). Fusion rate of group C and D were higher than that of group A and D. Conclusion: Intervertebral cages are superior to autologous iliac bone dowels for maintaining intervertebral height in PLIF. The additional pedicle screw fixation seems to stabilize the graft and improve fusion rates.

Clinical Safety Evaluation of Interbody Fusion Cage Based on Tunable Elastic Modulus of the Cellular Structure According to the Geometrical Variables (형상학적 변수에 따른 다공성 구조의 가변탄성계수를 기반으로 한 추간체유합보형재의 임상적 안전성 평가)

  • Kim, SeongJin;Lee, YongKyung;Choi, Jaehyuck;Hong, YoungKi;Kim, JungSung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • The interbody fusion cage used to replace the degenerative intervertebral disc is largely composed of titanium-based biomaterials and biopolymer materials such as PEEK. Titanium is characterized by osseointergration and biocompatibility, but it is posed that the phenomenon such as subsidence can occur due to high elastic modulus versus bone. On the other hand, PEEK can control the elastic modulus in a similar to bone, but there is a problem that the osseointegration is limited. The purpose of this study was to implement titanium material's stiffness similar to that of bone by applying cellular structure, which is able to change the stiffness. For this purpose, the cellular structure A (BD, Body Diagonal Shape) and structure B (QP, Quadral Pod Shape) with porosity of 50%, 60%, 70% were proposed and the reinforcement structure was suggested for efficient strength reinforcement and the stiffness of each model was evaluated. As a result, the stiffness was reduced by 69~93% compared with Ti6Al4V ELI material, and the stiffness most similar to cortical bone is calculated with the deviation of about 12% in the BD model with 60% porosity. In this study, the interbody fusion cage made of Ti6Al4V ELI material with stiffness similar to cortical bone was implementing by applying cellular structure. Through this, it is considered that the limitation of the metal biomaterial by the high elastic modulus may be alleviated.

A Multi-center Clinical Study of Posterior Lumbar Interbody Fusion with the Expandable Stand-alone Cage($Tyche^{(R)}$ Cage) for Degenerative Lumbar Spinal Disorders

  • Kim, Jin-Wook;Park, Hyung-Chun;Yoon, Seung-Hwan;Oh, Seong-Hoon;Roh, Sung-Woo;Rim, Dae-Cheol;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.251-257
    • /
    • 2007
  • Objective : This multi-center clinical study was designed to determine the long-term results of patients who received a one-level posterior lumbar interbody fusion with expandable cage ($Tyche^{(R)}$ cage) for degenerative spinal diseases during the same period in each hospital. Methods : Fifty-seven patients with low back pain who had a one-level posterior lumbar interbody fusion using a newly designed expandable cage were enrolled in this study at five centers from June 2003 to December 2004 and followed up for 24 months. Pain improvement was checked with a Visual Analogue Scale (VAS) and their disability was evaluated with the Oswestry Disability Index. Radiographs were obtained before and after surgery. At the final follow-up, dynamic stability, quality of bone fusion, interveretebral disc height, and lumbar lordosis were assessed. In some cases, a lumbar computed tomography scan was also obtained. Results : The mean VAS score of back pain was improved from 6.44 points preoperatively to 0.44 at the final visit and the score of sciatica was reduced from 4.84 to 0.26. Also, the Oswestry Disability Index was improved from 32.62 points preoperatively to 18.25 at the final visit. The fusion rate was 92.5%. Intervertebral disc height, recorded as $9.94{\pm}2.69\;mm$ before surgery was increased to $12.23{\pm}3.31\;mm$ at postoperative 1 month and was stabilized at $11.43{\pm}2.23\;mm$ on final visit. The segmental angle of lordosis was changed significantly from $3.54{\pm}3.70^{\circ}$ before surgery to $6.37{\pm}3.97^{\circ}$ by 24 months postoperative, and total lumbar lordosis was $20.37{\pm}11.30^{\circ}$ preoperatively and $24.71{\pm}11.70^{\circ}$ at 24 months postoperative. Conclusion : There have been no special complications regarding the expandable cage during the follow-up period and the results of this study demonstrates a high fusion rate and clinical success.

Anterior Cervical Interbody Fusion with the Carbon Composite Osta-Pek Frame Cage in Degenerative Cervical Diseases

  • Han, Kwang-Wook;Kim, Joon-Soo;Kim, Kyu-Hong;Cho, Yong-Woon;Lee, In-Chang;Bae, Sang-Do
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.6
    • /
    • pp.422-426
    • /
    • 2005
  • Objective: Different types of interbody fusion cages are available for use in the surgical treatment of degenerative cervical diseases. The purpose of this study is to assess the technical feasibility, clinical efficacy and radiological results of intervertebral fusion with a carbon composite Osta-Pek frame cage (Co-Ligne AG, Switzerland) following anterior cervical discectomy. Methods: 41 patients (25males and 16females) with minimum 6months follow-up were included in the study. Disc height, cervical lordotic angle, segmental angle, and fusion rate were assessed by lateral radiographs. In this retrospective analysis, clinical outcome was assessed as evaluated according to Odom's criteria. Results: Fifty-four cages were implanted in 30 single-level, 9 two-level, and 2 three-level procedures. The mean disc height, cervical lordosis angle, segmental angle were $4.2{\pm}1.8mm,\;23.5{\pm}7.2^{\circ},\;2.3{\pm}3.3^{\circ}$ pre-operatively and $5.3{\pm}2.1mm,\;24.2{\pm}8.3^{\circ},\;3.8{\pm}3.5^{\circ}$ at 6months after the surgery. Six months after surgery, there was radiographic evidence of fusion in 92.7% (38/41) of the patients. According to Odom's criteria, 37 of 41 (90.2%) patients experienced good to excellent functional recovery. Conclusion: These clinical and radiological results suggest that the carbon composite Osta-Pek frame cages are safe and effective alternative to autologous bone graft after anterior cervical discectomy for treatment of degenerative cervical disease.