• 제목/요약/키워드: interstorey drift ratio

검색결과 7건 처리시간 0.022초

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

Performance based plastic design of friction damped RC building

  • Mithu Dey;Md Saniyal Alam
    • Advances in concrete construction
    • /
    • 제17권4호
    • /
    • pp.221-232
    • /
    • 2024
  • As a supplemental energy dissipation device, friction dampers are widely employed to augment the behaviour of buildings under seismic forces. In the current work, a methodology for the design of the friction damping system of RC frame buildings is offered using performance-based plastic design (PBPD) method. Here 2% of maximum interstorey drift ratio for life safety (LS) level is taken into account as a target drift to estimate the design base shear. In this approach, the distribution of friction damper is determined based on the hysteretic energy demand of that storey. Two frames, five storey three bay (5S3B) and eight storey three bay (8S3B) RC frame building with and without friction damping systems are also taken up for the investigation. The suggested design approach is validated by the nonlinear time history analysis (NLTHA) procedure. Inter story drift ratio (ISDR) and storey displacement, which are the more closely related to structural damage during seismic excitation are evaluated. The results show that the friction damping system on a retrofitted RC frame building performs effectively under seismic excitations and that storey displacement and ISDR are within the limit at moderate and high seismic intensities.

Evaluation of local and global ductility relationships for seismic assessment of regular masonry-infilled reinforced concrete frames using a coefficient-based method

  • Su, R.K.L.;Tang, T.O.;Lee, C.L.
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Soft storey failure mechanism is a common collapse mode for masonry-infilled (MI) reinforced concrete (RC) buildings subjected to severe earthquakes. Simple analytical equations correlating global with local ductility demands are derived from pushover (PO) analyses for seismic assessments of regular MI RC frames, considering the critical interstorey drift ratio, number of storeys and lateral loading configurations. The reliability of the equations is investigated using incremental dynamic analyses for MI RC frames of up to 7 storeys. Using the analytical ductility relationship and a coefficient-based method (CBM), the response spectral accelerations and period shift factors of low-rise MI RC frames are computed. The results are verified through published shake table test results. In general applications, the analytical ductility relationships thus derived can be used to bypass the onerous PO analysis while accurately predicting the local ductility demands for seismic assessment of regular MI RC frames.

Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks

  • Kostinakis, Konstantinos G.;Morfidis, Konstantinos E.
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.295-309
    • /
    • 2020
  • The construction of Reinforced Concrete (R/C) buildings with unreinforced masonry infills is part of the traditional building practice in many countries with regions of high seismicity throughout the world. When these buildings are subjected to seismic motions the presence of masonry infills and especially their configuration can highly influence the seismic damage state. The capability to avoid configurations of masonry infills prone to seismic damage at the stage of initial architectural concept would be significantly definitive in the context of Performance-Based Earthquake Engineering. Along these lines, the present paper investigates the potential of instant prediction of the damage response of R/C buildings with various configurations of masonry infills utilizing Artificial Neural Networks (ANNs). To this end, Multilayer Feedforward Perceptron networks are utilized and the problem is formulated as pattern recognition problem. The ANNs' training data-set is created by means of Nonlinear Time History Analyses of 5 R/C buildings with a large number of different masonry infills' distributions, which are subjected to 65 earthquakes. The structural damage is expressed in terms of the Maximum Interstorey Drift Ratio. The most significant conclusion which is extracted is that the ANNs can reliably estimate the influence of masonry infills' configurations on the seismic damage level of R/C buildings incorporating their optimum design.

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.