• Title/Summary/Keyword: interspinous distraction device

Search Result 1, Processing Time 0.014 seconds

A Biomechanical Analysis of an Interspinous Distraction Device for Treatment of Lumbar Spinal Stenosis (요추부 협착증 치료를 위한 극돌기 삽입술의 생체역학적 효과 분석)

  • Lee Hui-Sung;Chen Wen Ming;Song Dong-Ryul;Kwon Soon-Young;Lee Kwon-Yong;Lee Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.210-217
    • /
    • 2006
  • Many types of interspinous distraction devices (IDDs) have been recently developed as an alternative surgical treatment to laminectomy and fusion with pedicle screws for the treatment of the lumbar spinal stenosis (LSS). They are intended to keep the lumbar spine in a slightly flexed posture to relieve pain caused by narrowing of the spinal canal and vertebral foramen. However, their biomechanical efficacies are not well known. In this study, we evaluated the kinematic behaviors and changes in intradiscal pressure (IDP) of the porcine lumbar spine implanted with IDD. For kinematics analysis, five porcine lumbar spines (L2-L6) were used and the IDD was inserted at L4-L5. Three markers (${\phi}{\le}0.8mm$) were attached on each vertebra to define a rigid body motion for stereophotogrammetric assessment of the spinal motion in 3-D. A moment of 7.5Nm in flexion-extension, lateral bending, and axial rotation were imparted with a compressive force of 700N. Then, IDD was implanted at L3-L4. IDPs were measured using pressure transducer under compression (700N) and additional extension moment (700N+7.5Nm). In kinematic behaviors, insertion of IDD resulted in statistically significant decrease 42.8% at the implanted level in extension. There were considerable changes in ROM at the adjacent levels, but statistically insignificant. In other motions, there were no significant changes in ROM as well regardless of levels. IDPs at the surgical level (L3-L4) under compression and extension moment decreased by 12.9% and 18.8% respectively after surgery (p<0.05). At the superiorly adjacent levels, IDPs increased by 19.4% and 12.9% under compression and extension, respectively (p<0.05). Corresponding changes at the inferiorly adjacent levels were 29.4% and 6.9%, but they were statistically insignificant (p>0.05). The magnitude of pressure changes due to IDD, both at the operated and adjacent levels, were far less than the previously reported values with conventional fusion techniques. Our experimental results demonstrated the IDDs can be very effective in limiting the extension motion that may cause narrowing of the spinal canal and vertebral foramens while maintaining kinematic behaviors and disc pressures at the adjacent levels.