• Title/Summary/Keyword: interplanetary magnetic field

Search Result 61, Processing Time 0.025 seconds

Proton Temperature Anisotropy vs Parallel Beta in the Solar Wind

  • Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.92.2-92.2
    • /
    • 2011
  • In view of the planned NASA's and ESA's Solar Probe Plus and Solar Orbiter missions, respectively, to probe the inner heliosphere and the Sun's corona, it is timely to investigate outstanding problems associated with the solar wind. Among them is the temperature anisotropy problem. As the solar wind expands into the interplanetary space, the density and magnetic field decreases radially, thus leading to temperature anisotropy ($T_{\parallel}{\gg}T_{\perp}$). However, the measured temperature anisotropy can at times be characterized by $T_{\perp}$ > $T_{\parallel}$, while at other times the measured $T_{\parallel}/T_{\perp}$ is much milder than predicted by adiabatic theory. Physical reasons remain poorly understood. This notwithstanding, it is known from plasma physics that for $T_{\perp}$ > $T_{\parallel}$ electromagnetic ion-cyclotron (EMIC) and mirror instabilities are excited, while for $T_{\parallel}$ > $T_{\perp}$, fire-hose instability is excited. By constructing the threshold conditions for various instabilities, one may construct a closure relation that may be useful for modeling the solar wind. In the present paper we discuss theoretical construction of the anisotropy-beta relation by means of quasi-linear theories of these instabilities. The present work complements previous efforts on the basis of linear theory, hybrid simulations, and empirical fits of observations.

  • PDF

Automatic real-time system of the global 3-D MHD model: Description and initial tests

  • Park, Geun-Seok;Choi, Seong-Hwan;Cho, Il-Hyun;Baek, Ji-Hye;Park, Kyung-Sun;Cho, Kyung-Suk;Choe, Gwang-Son
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • The Solar and Space Weather Research Group (SOS) in Korea Astronomy and Space Science Institute (KASI) is constructing the Space Weather Prediction Center since 2007. As a part of the project, we are developing automatic real-time system of the global 3-D magnetohydrodynamics (MHD) simulation. The MHD simulation model of earth's magnetosphere is designed as modified leap-frog scheme by T. Ogino, and it was parallelized by using message passing interface (MPI). Our work focuses on the automatic processing about simulation of 3-D MHD model and visualization of the simulation results. We used PC cluster to compute, and virtual reality modeling language (VRML) file format to visualize the MHD simulation. The system can show the variation of earth's magnetosphere by the solar wind in quasi real time. For data assimilation we used four parameters from ACE data; density, pressure, velocity of solar wind, and z component of interplanetary magnetic field (IMF). In this paper, we performed some initial tests and made a animation. The automatic real-time system will be valuable tool to understand the configuration of the solar-terrestrial environment for space weather research.

  • PDF

Apophis Rendezvous Mission: II. Payloads and Operation Scenario

  • Jeong, Minsup;Choi, Young-Jun;Moon, Hong-Kyu;Kim, Myung-Jin;Choi, Jin;Moon, Bongkon;JeongAhn, Youngmin;Lee, Hee-Jae;Baek, Seul-Min;Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2021
  • We plan to visit the Apophis, a Potentially Hazardous Asteroid (PHA). Apophis will have an extremely close encounter with the Earth on April, 2029. At the closest position, Apophis approaches 0.1 lunar distances from the Earth. The science goals are 1) mapping the surface of the asteroid before and after the encounter, 2) measuring surface roughness before and after the encounter, and 3) measuring interplanetary space environments such as magnetic field and dust particles. For the science goal, we are planning to employ five instruments for this mission, which are Polarimetric Asteroid Camera (PolACam), Asteroid Terrain Mapping Camera (MapCam), Laser Altimeter, Dust Particle Detector (DPDetector), Magnetometer (Mag). In this presentation, we plan to give a talk on the instruments.

  • PDF

Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF) (고위도 하부 열권 바람의 소용돌이도와 발산 분석: 행성간 자기장(IMF)에 대한 의존도)

  • Kwak, Young-Sil;Lee, Jae-Jin;Ahn, Byung-Ho;Hwang, Jung-A;Kim, Khan-Hyuk;Cho, Kyung-Seok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM) is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ulti-mately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive $B_y$ shows positive and negative, respectively, at higher magnetic latitudes than $-70^{\circ}$. For negative $B_z$, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive $B_z$ have opposite sign. Negative IMF $B_z$ has a stronger effect on the vorticity than does positive $B_z$.

Do Inner Planets Modulate the Space Environment of the Earth?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth's neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets' wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE) spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index) are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth's neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.

Forecast of geomagnetic storm using coronal mass ejection and solar wind condition near Earth

  • Kim, Rok-Soon;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.63.1-63.1
    • /
    • 2013
  • To improve the forecast capability of geomagnetic storms, we consider the real time solar and near Earth conditions together, since the characteristics of CMEs can be modified during their transit from the Sun to the Earth, and the geomagnetic storms may be directly affected by not only solar events but also near Earth interplanetary conditions. Using 55 CME-Dst pairs associated with M- and X-class solar flares, which have clearly identifiable source regions during 1997 to 2003, we confirm that the peak values of negative magnetic field Bz and duskward electric field Ey prior to Dst minimum are strongly related with Dst index. We suggest the solar wind criteria (Bz<-5 nT or Ey>3 mV/m for t>2 hr) for moderate storm less than -50 nT by modifying the criteria for intense storms less than -100 nT proposed by Gonzalez and Tsurutani (GT, 1987). As the results, 90% (28/31) of the storms are correctly forecasted by our criteria. For 15 exceptional events that are incorrectly forecasted by only CME parameters, 12 cases (80%) can be properly forecasted by solar wind criteria. When we applying CME and solar wind conditions together, all geomagnetic storms (Dst<-50 nT) are correctly forecasted. Our results show that, the storm forecast capability of the 2~3 days advanced warning based on CME parameters can be improved by combining with the urgent warning based on the near Earth solar wind condition.

  • PDF

Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006 (2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트)

  • Lee, Sung-Eun;Hwang, Jung-A;Lee, Jae-Jin;Cho, Kyung-Suk;Kim, Khan-Hyuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.439-450
    • /
    • 2009
  • Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

CHARACTERISTIC SOLAR WIND DYNAMICS ASSOCIATED WITH GEOSYNCHRONOUS RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • We have investigated characteristic solar wind dynamics associated with relativistic electron events at geosynchronous orbit. Most of the events for April, 1999 through December, 2002 are found to be accompanied by a prolonged solar quiet period which is characterized as low solar wind density, weak interplanetary magnetic field (IMF), and fast alfvenic fluctuations in IMF $B_z$. In a typical relativistic event, electron fluxes begin to increase by orders of magnitude when solar wind parameters drop to low values (e.g., $n_{sw}∼5 cm^{-3}$ and |$B_{IMF}$∼5 nT) after sharp peaks. Then the elevated electron fluxes stay at the high level during the solar quiet period. This observation may suggest the following scenario for the occurrence of a geosynchronous relativistic event: (ⅰ) Quiet solar winds can yield a stable and more dipole-like magnetospheric configurations in which the geosynchronous orbit locates well inside the trapping boundary of the energetic electrons. (ⅱ) If a large population of MeV electrons are generated (by whatever acceleration process(es)) in the inner magnetosphere, they can be trapped and effectively accumulated to a high intensity. (ⅲ) The high electron flux can persist for a number of days in the geosynchronous region as long as the solar wind dynamics stays quiet. Therefore the scenario indicates that the occurrence of a relativistic event would be a result of a delicate balance between the effects of electron acceleration and loss. In addition, the sensitive dependence of a relativistic event on the solar wind conditions makes the prediction of solar wind variability as important as understanding of electron acceleration processes in the forecast of a relativistic event.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

LOCAL TIMES OF GALACTIC COSMIC RAY INTENSITY MAXIMUM AND MINIMUM IN THE DIURNAL VARIATION (우주선 세기 일변화 최대 및 최소 지방시)

  • Oh Su-Yeon;Yi Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2006
  • The Diurnal variation of galactic cosmic ray (GCR) flux intensity observed by the ground Neutron Monitor (NM) shows a sinusoidal pattern with the amplitude of $1{\sim}2%$ of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum aad minimum. To test the influences of the solar activity and the location (cut-off rigidity) on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum) and 2000 (solar maximum) at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV) and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV) NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about $2{\sim}3$ hours in the solar activity maximum year 2000 than in the solar activity minimum you 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by $2{\sim}3$ hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.