• 제목/요약/키워드: interplanetary

검색결과 172건 처리시간 0.026초

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권2호
    • /
    • pp.149-157
    • /
    • 2014
  • As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth's magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1) The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2) When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3) The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4) The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5) The distribution of the AE index and the Dst index shares statistical features closely with BV and $BV^2$ compared with other heliospheric parameters. In this sense, BV and $BV^2$ are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권2호
    • /
    • pp.159-167
    • /
    • 2014
  • Solar variability is widely known to affect the interplanetary space and in turn the Earth's electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, $B_X$, $B_Y$, $B_Z$. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1) Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2) The peaks in the power spectrum of $B_Z$ appear to be split due to an unknown agent. (3) For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4) Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth's space environment is not subject to the shadow of the inner planets as suggested earlier.

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF

Comparsion of Dst forecast models during intense geomagnetic storms (Dst $\leq$ -100 nT)

  • Ji, Eun-Young;Moon, Yong-Jae;Lee, Dong-Hun
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • We have investigated 63 intense geomagnetic storms (Dst $\leq$ -100 nT) that occurred from 1998 to 2006. Using these events, we compared Dst forecast models: Burton et al. (1975), Fenrich and Luhmann (1998), O'Brien and McPherron (2000a), Wang et al. (2003), and Temerin and Li (2002, 2006) models. For comparison, we examined a linear correlation coefficient, RMS error, the difference of Dst minimum value (${\Delta}$peak), and the difference of Dst minimum time (${\Delta}$peak_time) between the observed and the predicted during geomagnetic storm period. As a result, we found that Temerin and Li model is mostly much better than other models. The model produces a linear correlation coefficient of 0.94, a RMS (Root Mean Square) error of 14.89 nT, a MAD (Mean Absolute Deviation) of ${\Delta}$peak of 12.54 nT, and a MAD of ${\Delta}$peak_time of 1.44 hour. Also, we classified storm events as five groups according to their interplanetary origin structures: 17 sMC events (IP shock and MC), 18 SH events (sheath field), 10 SH+MC events (Sheath field and MC), 8 CIR events, and 10 nonMC events (non-MC type ICME). We found that Temerin and Li model is also best for all structures. The RMS error and MAD of ${\Delta}$peak of their model depend on their associated interplanetary structures like; 19.1 nT and 16.7 nT for sMC, 12.5 nT and 7.8 nT for SH, 17.6 nT and 15.8 nT for SH+MC, 11.8 nT and 8.6 nT for CIR, and 11.9 nT and 10.5 nT for nonMC. One interesting thing is that MC-associated storms produce larger errors than the other-associated ones. Especially, the values of RMS error and MAD of ${\Delta}$peak of SH structure of Temerin and Li model are very lower than those of other models.

  • PDF

Problems in Identification of ICMEs and Magnetic Clouds

  • Marubashi, Katsuhide;Kim, Yeon-Han;Cho, Kyung-Suk;Park, Young-Deuk;Choi, Kyu-Cheol;Baek, Ji-Hye;Choi, Seong-Hwan
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.46.1-46.1
    • /
    • 2010
  • This work is a part of our project to establish a Website which provides a list of magnetic clouds (MCs) identified by WIND and ACE spacecraft. MCs are characterized by their magnetic fields that are well described by magnetic flux rope structures, whereas interplanetary coronal mass ejections (ICMEs) are interplanetary manifestations of coronal mass ejections (CMEs), usually identified by differences of plasma and magnetic field characteristics from those in the background solar wind. It is widely accepted that, while MCs are generally identified within ICMEs, the number of MCs are significantly lower than the number of ICMEs. In our effort to identify MCs, however, we have found that there was a big problem in identification method of MCs in previous works. Generally speaking, most of the previous surveys failed in identifying MCs which encounter the spacecraft at large distances from the MC axis, or near the surface of MC structures. In our survey, MCs are identified as the region of which magnetic fields are well described by appropriate flux rope models. Thus, we could selected over 45 MCs, in 1999 solar wind data for instance, while 33 ICMEs are listed in the Website of the ACE Science Center reported by Richardson and Cane.

  • PDF

The role of heliospheric current sheet on solar energetic particles with enhanced Fe/O

  • Park, Jinhye;Bucik, R.;Moon, Yong-Jae;Kahler, S.W.
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.52.1-52.1
    • /
    • 2018
  • We investigate initial Fe/O enhancements for 44 large gradual solar energetic particles events from 2010 to 2014 and examine the associations of the Fe/O enhancements with the structures of the heliospheric current sheet (HCS). For this study, we use STEREO SIT Fe and O data in 0.32-0.45 MeV channel as well as ACE ULEIS Fe and O data in 0.32-0.64 MeV channel. We determine 1) the magnetic polarities of the SEP source regions using the potential field source surface (PFSS) model of the coronal field and 2) the spacecraft magnetic footpoints with Parker spiral approximation of interplanetary magnetic field using the in-situ measurements of STEREO and ACE. We find that 29 out of 44 events have initial Fe/O enhanced more than 5 times of the typical gradual event values. In the 6 events, the enhancements are simultaneously observed by two spacecraft. There is a tendency that the high Fe/O enhancements are observed near SEP source regions. It is also noted that the Fe/O enhancements are associated with the polarity of the magnetic footpoints. The high Fe/O enhancements are usually observed where their footpoints lie in the same polarity regions of SEP sources rather than the opposite polarity regions. Although Fe/O enhancements could be due to a transport effect and/or a flare contribution, our result implies that the structure of HCS is likely to affect particle propagations in the interplanetary space.

  • PDF

Magnetospheric and ionospheric responses to the passage of solar wind discontinuity on 24 November 2008

  • Kim, Khan-Hyuk;Park, Jong-Sun;Lee, Dong-Hun;Park, Young-Deuk;Angelopoulos, V.;Nishitani, N.;Hori, T.;Shiokawa, K.;Yumoto, K.;Baishev, D.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.91-91
    • /
    • 2011
  • The passage of the interplanetary discontinuity (i.e., sudden increases in the solar wind speed, density, and IMF strength) was detected by ACE near GSE (x, y, z) ~ (222, -36, 3) Re upstream of Earth around 22:48 UT on November 24, 2008. About 55 min later, this solar wind discontinuity was observed by Geotail near GSE (x, y, z) ~ (23, 18, -7) Re in front of Earth's bow shock. From the propagation time of the solar wind discontinuity between ACE and Geotail, it is expected that the discontinuity front is aligned with the Parker spiral and strikes the postnoon dayside magnetopause first. Using coordinated multi-point measurements (THEMIS and GOES) at or in geosynchronous orbit, we observed a tailward propagating sudden impulse (SI), excited by the interplanetary discontinuity, around 23:50 UT with its front retaining alignment similar to that of solar wind discontinuity. The SI event appears a negative-then-positive variation in the H component at high latitude Chokurdakh (CHD: MLAT ~ 64.7 deg) in the prenoon sector, which is opposite sense of normal SI event. During the positive deflection at CHD, the SuperDARN Hokkaido radar detected the downward motion of the ionosphere, implying westward electric field enhancement, at subauroral latitudes near CHD meridian. In our study we will discuss magnetospheric and ionospheric responses to the passage of the solar wind discontinuity using multi-point observations in space and on the ground.

  • PDF

Dependence of solar proton events on their associated activities: solar and interplanetary type II radio burst, flare, and CME

  • Park, Jinhye;Youn, Saepoom;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.80.2-81
    • /
    • 2016
  • We investigate the dependence of solar proton events (SPEs) on solar and interplanetary type II bursts associated with solar flares and/or CME-driven shocks. For this we consider NOAA solar proton events from 1997 to 2012 and their associated flare, CME, and type II radio burst data with the following subgroups: metric, decameter-hectometric (DH), and meter-to-kilometric (m-to-km) type II bursts. The primary findings of this study are as follows. First, about half (52%) of the m-to-km type II bursts are associated with SPEs and its occurrence rate is higher than those of DH type II bursts (45%) and metric type II bursts (19%). Second, the SPE occurrence rate strongly depends on flare strength and source longitude, especially for X-class flare associated ones; it is the highest in the central region for metric (46%), DH (54%), and m-to-km (75%) subgroups. Third, the SPE occurrence rate is also dependent on CME linear speed and angular width. The highest rates are found in the m-to-km subgroup associated with CME speed 1500 kms-1: partial halo CME (67%) and halo CME (55%). Fourth, in the relationships between SPE peak fluxes and solar eruption parameters (CME linear speed, flare flux, and longitude), SPE peak flux is mostly dependent on SPE peak flux for all three type II bursts (metric, DH, m-to-km). It is noted that the dependence of SPE peak flux on flare peak flux decreases from metric to m-to-km type II burst.

  • PDF

Three-dimensional MHD modeling of a CME propagating through a solar wind

  • An, Jun-Mo;Inoue, Satoshi;Magara, Tetsuya;Lee, Hwanhee;Kang, Jihye;Kim, Kap-Sung;Hayashi, Keiji;Tanaka, Takashi
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.70.2-70.2
    • /
    • 2014
  • We developed a three-dimensional (3D) magnetohydrodynamic (MHD) simulation code to reproduce the structure of a solar wind and the propagation of a coronal mass ejection (CME) through it. This code is constructed by a finite volume method based on a total variation diminishing (TVD) scheme using an unstructured grid system (Tanaka 1994). The grid system can avoid the singularity arising in the spherical coordinate system. In this study, we made an improvement of the code focused on the propagation of a CME through a solar wind, which extends a previous work done by Nakamizo et al. (2009). We first reconstructed a solar wind in a steady state from physical values obtained at 50 solar radii away from the Sun via an MHD tomography applied to interplanetary scintillation (IPS) data (Hayashi et al. 2003). We selected CR2057 and inserted a spheromak-type CME (Kataoka et al. 2009) into a reconstructed solar wind. As a result, we found that our simulation well captures the velocity, temperature and density profiles of an observed solar wind. Furthermore, we successfully reproduce the general characteristics of an interplanetary coronal mass ejection (ICME) obtained by the Helios 1/2 spacecraft (R. J. FORSYTH et al. 2006).

  • PDF