• Title/Summary/Keyword: internet routers

Search Result 171, Processing Time 0.019 seconds

Study on Architecture of ATM LSR Supporting VC Merging and Traffic Engineering over It (VC 머징이 가능한 ATM LSR의 구조 및 트래픽 엔지니어링 연구)

  • Chung, Ho-Yeon;Seo, Jae-Young;Baek, Jang-Hyun
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.152-158
    • /
    • 2002
  • The explosive growth of the internet traffic in the last few years has imposed tremendous stress on today's routers, particularly in the core network. Recently, ATM LSRs(Label Switching Router) are potentially capable of providing the highest forwarding capacity in the backbone Internet network. VC merging is a mechanism in an ATM LSR that allows many IP routes to be mapped to the same VC label, and provides a scalable mapping method that can support thousands of destinations. VC merging requires reassembly buffers so that cells belonging to different packets intended for the same destination do not interleave with each other. In this study, we propose an architecture of the ATM LSR which supports VC merging. We propose traffic control scheme called APD(Active Packet Discard) algorithm so that predicts and controls the congestion of the Internet traffic effectively. We study the performance of this algorithm using simulation.

Mobility Management Algorithm with Reduced Wireless Signaling Cost in the Wireless Internet (무선 인터넷에서 무선 시그널링 양을 줄이기 위한 이동성 관리 알고리듬)

  • Kim, Tae-Hyoun;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2B
    • /
    • pp.27-35
    • /
    • 2005
  • As the number of Mobile IP users is expected to grow, the signaling overhead associated with mobility management in the wireless Internet is bound to grow. And since the wireless link has far less bandwidth resources and limited scalability compared to the wired network link, the signaling overhead associated with mobility management has a severe effect on the wireless link. In this paper, we propose IP-Grouping algorithm that can greatly reduce the signaling cost in the wireless link as Access Routers(ARs) with a large rate of handoff are grouped into a Group Zone. Based on the numerical analysis and simulation, we show that the wireless signaling cost in the IP-Grouping is much lower than that of the Hierarchical Mobile IPv6 under various condition.

Traffic Engineering Based on Local States in Internet Protocol-Based Radio Access Networks

  • Barlow David A.;Vassiliou Vasos;Krasser Sven;Owen Henry L.;Grimminger Jochen;Huth Hans-Peter;Sokol Joachim
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.377-384
    • /
    • 2005
  • The purpose of this research is to develop and evaluate a traffic engineering architecture that uses local state information. This architecture is applied to an Internet protocol radio access network (RAN) that uses multi-protocol label switching (MPLS) and differentiated services to support mobile hosts. We assume mobility support is provided by a protocol such as the hierarchical mobile Internet protocol. The traffic engineering architecture is router based-meaning that routers on the edges of the network make the decisions onto which paths to place admitted traffic. We propose an algorithm that supports the architecture and uses local network state in order to function. The goal of the architecture is to provide an inexpensive and fast method to reduce network congestion while increasing the quality of service (QoS) level when compared to traditional routing and traffic engineering techniques. We use a number of different mobility scenarios and a mix of different types of traffic to evaluate our architecture and algorithm. We use the network simulator ns-2 as the core of our simulation environment. Around this core we built a system of pre-simulation, during simulation, and post-processing software that enabled us to simulate our traffic engineering architecture with only very minimal changes to the core ns-2 software. Our simulation environment supports a number of different mobility scenarios and a mix of different types of traffic to evaluate our architecture and algorithm.

An Efficient Load Balancing Scheme for Multi-Gateways in Wireless Mesh Networks

  • Liu, Junping;Chung, Sang-Hwa
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.365-378
    • /
    • 2013
  • In Wireless Mesh Networks (WMNs), we usually deploy multiple Internet Gateways (IGWs) to improve the capacity of WMNs. As most of the traffic is oriented towards the Internet and may not be distributed evenly among different IGWs, some IGWs may suffer from bottleneck problem. To solve the IGW bottleneck problem, we propose an efficient scheme to balance the load among different IGWs within a WMN. Our proposed load-balancing scheme consists of two parts: a traffic load calculation module and a traffic load migration algorithm. The IGW can judge whether the congestion has occurred or will occur by using a linear smoothing forecasting method. When the IGW detects that the congestion has occurred or will occur, it will firstly select another available IGW that has the lightest traffic load as the secondary IGW and then inform some mesh routers (MPs) which have been selected by using the Knapsack Algorithm to change to the secondary IGW. The MPs can return to their primary IGW by using a regression algorithm. Our Qualnet 5.0 experiment results show that our proposed scheme gives up to 18% end-to-end delay improvement compared with the existing schemes.

Prefix Cuttings for Packet Classification with Fast Updates

  • Han, Weitao;Yi, Peng;Tian, Le
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1442-1462
    • /
    • 2014
  • Packet classification is a key technology of the Internet for routers to classify the arriving packets into different flows according to the predefined rulesets. Previous packet classification algorithms have mainly focused on search speed and memory usage, while overlooking update performance. In this paper, we propose PreCuts, which can drastically improve the update speed. According to the characteristics of IP field, we implement three heuristics to build a 3-layer decision tree. In the first layer, we group the rules with the same highest byte of source and destination IP addresses. For the second layer, we cluster the rules which share the same IP prefix length. Finally, we use the heuristic of information entropy-based bit partition to choose some specific bits of IP prefix to split the ruleset into subsets. The heuristics of PreCuts will not introduce rule duplication and incremental update will not reduce the time and space performance. Using ClassBench, it is shown that compared with BRPS and EffiCuts, the proposed algorithm not only improves the time and space performance, but also greatly increases the update speed.

IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture Using an Indexed Multibit Trie

  • Kim, Junghwan;Ko, Myeong-Cheol;Shin, Moon Sun;Kim, Jinsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1922-1940
    • /
    • 2019
  • IP address lookup is a function to determine nexthop for a given destination IP address. It takes an important role in modern routers because of its computation time and increasing Internet traffic. TCAM-based IP lookup approaches can exploit the capability of parallel searching but have a limitation of its size due to latency, power consumption, updatability, and cost. On the other hand, multibit trie-based approaches use SRAM which has relatively low power consumption and cost. They reduce the number of memory accesses required for each lookup, but it still needs several accesses. Moreover, the memory efficiency and updatability are proportional to the number of memory accesses. In this paper, we propose a novel architecture using an Indexed Multibit Trie (IMT) which is based on combined TCAM and SRAM. In the proposed architecture, each lookup takes at most two memory accesses. We present how the IMT is constructed so as to be memory-efficient and fast updatable. Experiment results with real-world forwarding tables show that our scheme achieves good memory efficiency as well as fast updatability.

Tuple Pruning Using Bloom Filter for Packet Classification (패킷 분류를 위한 블룸 필터 이용 튜플 제거 알고리즘)

  • Kim, So-Yeon;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • Due to the emergence of new application programs and the fast growth of Internet users, Internet routers are required to provide the quality of services according to the class of input packets, which is identified by wire-speed packet classification. For a pre-defined rule set, by performing multi-dimensional search using various header fields of an input packet, packet classification determines the highest priority rule matching to the input packet. Efficient packet classification algorithms have been widely studied. Tuple pruning algorithm provides fast classification performance using hash-based search against the candidate tuples that may include matching rules. Bloom filter is an efficient data structure composed of a bit vector which represents the membership information of each element included in a given set. It is used as a pre-filter determining whether a specific input is a member of a set or not. This paper proposes new tuple pruning algorithms using Bloom filters, which effectively remove unnecessary tuples which do not include matching rules. Using the database known to be similar to actual rule sets used in Internet routers, simulation results show that the proposed tuple pruning algorithm provides faster packet classification as well as consumes smaller memory amount compared with the previous tuple pruning algorithm.

A Stabilized Queue Management Algorithm for Internet Congestion Control (인터넷 혼잡제어를 위한 안정적인 큐 관리 알고리즘)

  • 구자헌;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection). But, RED configuration has been a problem since its first proposal. This problem is that proposed configuration is only good for the particular traffic conditions studied, but may have detrimental effects if used in other conditions. While active queue management in routers and gateways can potentially reduce packet loss rates in the Internet, this paper has demonstrated the inherent weakness of current techniques and shows that they are unstable for tile various traffic conditions. The inherent problem with these queue management algorithms is that they all use static parameter setting. In this paper, in order to solve this problem, a new active queue management algorithm called SQM(Stabilized Queue Management) is proposed. This paper shows that it is easy to parameterize SQM algorithm to perform well under different congestion scenarios. This algorithm can effectively reduce packet loss while maintaining high link utilizations and is good for the various traffic conditions.

Adaptive Differentiated Integrated Routing Scheme for GMPLS-based Optical Internet

  • Wei, Wei;Zeng, Qingji;Ye, Tong;Lomone, David
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.269-279
    • /
    • 2004
  • A new online multi-layer integrated routing (MLIR) scheme that combines IP (electrical) layer routing with WDM (optical) layer routing is investigated. It is a highly efficient and cost-effective routing scheme viable for the next generation integrated optical Internet. A new simplified weighted graph model for the integrated optical Internet consisted of optical routers with multi-granularity optical-electrical hybrid switching capability is firstly proposed. Then, based on the proposed graph model, we develop an online integrated routing scheme called differentiated weighted fair algorithm (DWFA) employing adaptive admission control (routing) strategies with the motivation of service/bandwidth differentiation, which can jointly solve multi-layer routing problem by simply applying the minimal weighted path computation algorithm. The major objective of DWFA is fourfold: 1) Quality of service (QoS) routing for traffic requests with various priorities; 2) blocking fairness for traffic requests with various bandwidth granularities; 3) adaptive routing according to the policy parameters from service provider; 4) lower computational complexity. Simulation results show that DWFA performs better than traditional overlay routing schemes such as optical-first-routing (OFR) and electrical-first-routing (EFR), in terms of traffic blocking ratio, traffic blocking fairness, average traffic logical hop counts, and global network resource utilization. It has been proved that the DWFA is a simple, comprehensive, and practical scheme of integrated routing in optical Internet for service providers.

A Method for Original IP Detection of VPN Accessor (VPN 접속자의 원점 IP 탐지 방법)

  • Kim, Inhwan;Kim, Dukyun;Cho, Sungkuk;Jeon, Byungkook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • In most hacking attacks, hackers tend to access target systems in a variety of circumvent connection methods to hide their original IP. Therefore, finding the attacker's IP(Internet Protocol) from the defender's point of view is one of important issue to recognize hackers. If an attacker uses a proxy, original IP can be obtained through a program other than web browser in attacker's computer. Unfortunately, this method has no effect on the connection through VPN(Virtual Private Network), because VPN affects all applications. In an academic domain, various IP traceback methods using network equipments such as routers have been studied, but it is very difficult to be realized due to various problems including standardization and privacy. To overcome this limitation, this paper proposes a practical way to use client's network configuration temporarily until it can detect original IP. The proposed method does not only restrict usage of network, but also does not violate any privacy. We implemented and verified the proposed method in real internet with various VPN tools.