• Title/Summary/Keyword: international vessel

Search Result 444, Processing Time 0.021 seconds

Improving the Port-Reception-Facility System (선박 배출 오염물질 항만처리시스템 확보방안 연구)

  • Ha, Shin-Young;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.488-493
    • /
    • 2020
  • In this study, we sought to establish a vessel-discharge pollutant-treatment system recommended by IMO by first investigating advanced facilities overseas to help us understand and evaluate our domestic facility and needs. IMO recommends the installation and operation of port pollutant-storage facilities to adequately treat pollutants emitted by ships entering the port, and we reviewed the registration and operation of these facilities in IMO member countries, focusing on the IIII Code. Due to recent environmental regulations, additional facilities are required to treat the washing water discharged from equipment such as scrubbers mounted on the ship so pollutant-storage facilities must be established. Currently, Korea's ship-discharged wastes are being moved from ports to land waste-treatment plants, and their quantity and properties are not being monitored. Therefore, in this study, we improved monitoring of the discharged pollutants and investigated the proper arrangement of pollutant storage facilities as recommended by IMO. The system we established can help provide smooth service to incoming ships - and appropriate treatment of pollutants and will greatly benefit international maritime operations.

A Study on Safe Operation Standards of Piers based on Mooring Safety Evaluation to Increase Efficiency of Local Management Trade Ports (지방관리 무역항의 효율성 증대를 위한 계류안전성 평가 기반의 부두 안전운용기준에 관한 연구)

  • Kim, Seungyeon;Yu, Yongung;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Local management trade ports are small-sized trade ports, which require active operation to strengthen the local cities' economic power and enhance the local industries' added value. In addition, local management trade ports should berth ships larger than the existing ships to increase efficiency and keep up with the international trend where ships are becoming larger. Furthermore, they should also prepare operating standards. This study selected Okgye Port among local management trade ports. We performed a mooring safety simulation evaluation according to the scenario where a 50,000 DWT vessel is moored at the current 20,000 DWT class pier. The emergency departure criteria were 27kts at 3.2s of wave period and 22kts at 5.0s of wave period at the existing pier. Results showed that mooring limit condition increased by about 50% to 41kts at 3.2s of wave period and 36kts at 5.0s of wave period. This study can be used for strengthening mooring facilities and setting operational standards for safe port operation when large ships are berthing.

FMEA of Electric Power Management System for Digital Twin Technology Development of Electric Propulsion Vessels (전기추진선박 디지털트윈 기술개발을 위한 전력관리시스템 FMEA)

  • Yoon, Kyoungkuk;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1098-1105
    • /
    • 2021
  • The International Maritime Organization has steadily strengthened environmental regulations on nitrogen oxides and carbon dioxide emitted from marine vessels. Consequently, the demand for electric propulsion vessels based on eco-friendly elements has increased. To this end, research and development has been steadily conducted for various vessels. In electric propulsion systems, a redundancy configuration is typically adopted to increase reliability and facilitate the onboard arrangement. Furthermore, studies have been actively conducted to ensure the safety of electric propulsion systems through the combination with digital twin technology. A digital twin can be used to predict outcomes in advance by implementing real-world equipment or space in a virtual world like twins, integrating real-world information and data with the virtual world, and performing computer simulations of situations that can occur in a real environment. In this study, we perform failure modes and effects analysis (FMEA) to validate the electric power management system (PMS) redundancy scheme for the digital twin technology development of electric propulsion vessels. Then, we propose the role and algorithm of PMS as a compensation function for preventing primary and secondary damages caused by a single equipment failure of the PMS and preventing additional damages by analyzing the impact on the entire system under real vessel operating conditions based on the redundancy FMEA suggested for the ship classification and certification. We verified the improvement in propulsion conservation through tests.

A Study on the Application of Hybrid Propulsion System for Fishing Vessels (어선용 복합 추진시스템 적용을 위한 연구)

  • Jung-Ho Noh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1238-1243
    • /
    • 2022
  • The International Maritime Organization is at the forefront of strengthening gas emission regulations for ships globally. The Korean government needs to apply measures to reduce emissions, such as setting a basic roadmap for greenhouse gas reduction. In addition, there is an urgent need to introduce a new efficient propulsion system that can reduce gas emissions. This includes applications to fishing vessels, which account for 90.6% of the greenhouse gas emissions from ships sailing along domestic coasts. In this study, an electric-combined propulsion system applicable to domestic coastal fishing vessels was developed. The target ship to which the electric-combined propulsion system could be applied was selected. A simulation system was constructed using MATLAB/Simulink to compare the expected fuel consumption when applying the developed complex electric propulsion system to the propulsion system mounted on the selected target fishing vessel. Through simulations, the differences in fuel consumption between the mechanical propulsion system and the electric hybrid propulsion system (both when charging and not charging the battery on land) were confirmed. The results show that fuel consumption can be decreased by approximately 13% and 16% when applying the electric-combined propulsion system.

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (초대형 컨테이너 선박의 생산성 및 효율성 분석 -부산항을 중심으로-)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.121-122
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (부산항 터미널별 선박 규모에 따른 선석 생산성 및 항만 효율성 비교분석)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.72-73
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Regrowth Ability and Species Composition of Phytoplankton in International Commercial Ship's Ballast Water Berthed at Pusan and Daesan Ports (부산과 대산항에서 선박평형수에 유입된 식물플랑크톤의 종조성과 재성장능력)

  • Baek, Seung-Ho;Jang, Min-Chul;Shin, Kyoung-Soon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 2011
  • The aim of this study is to assess the importance of ballast water discharge as a vector for the introduction of exotic species into Pusan and Daesan Ports, Korea. We also examined to understand the impacts of environmental factors on the survival success of introduced species by ship's ballast water in laboratory experiments. Seven ship's ballast water originated from the coastal water of China (Taicang, Ningbo and Jinshan), Japan (Tokuyama, Moji and Akita), and Singapore. According to PCA (principal components analysis) analysis, environmental factor in the each ballast and shipside waters were different by bioregion. Based on cluster analysis, the phytoplankton community structures were distinguished for ballast water origin. Most of the major taxonomic groups were diatoms and, the others were dinoflagellate, silcoflagellate and several fresh-waters species. In particular, species number and standing crops of phytoplankton in the ballast tanks decreased with the increasing age ofballast water(r = -0.35 for standing crop; r = -0.63 for species number). In the laboratory study, although phytoplankton in ballast water treatment did not survive even in optimal temperature, the in vivo fluorescence of phytoplankton viability increased under the nutrient typical of shipside water and F/2 medium at $15^{\circ}C$ and $20^{\circ}C$. The diatoms species such as Skeletonema costatum and Thalassiosira pseudonana in ballast water were successfully regrown. On the salinity gradient experiments for Shui Shan (2) vessel, several freshwater species, brackish and marine species were successfully adapted. Of these, S.costatum was able to tolerate a wide range of salinities (10 to 30 psu) and its species-specific viability was suitable for colonization.

U.S. Admiralty Jurisdiction over aviation claims (항공사고에 관한 미국 해사법정관할)

  • Lee, Chang-Jae
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.2
    • /
    • pp.3-35
    • /
    • 2016
  • The United States Constitution gives power to the federal district courts to hear admiralty cases. 28 U.S.C. §.133, which states that "The district courts shall have original jurisdiction, exclusive of the Courts of the States, of any civil case of admiralty or maritime jurisdiction." However, the determination of whether a case is about admiralty or maritime so that triggers admiralty jurisdiction was not a simple question. Through numerous legal precedents, the courts have drawn a line to clarify the boundary of admiralty cases. This unique jurisdiction is not determined by the mere involvement of a vessel in the case or even by the occurrence of an event on a waterway. As a general rule, a case is within admiralty jurisdiction if it arises from an accident on the navigable waters of the United States (locus test) and involves some aspect of maritime commerce (nexus test). With regarding to the maritime nexus requirement, the US Supreme Court case, Executive Jet Aviation, Inc. v. City of Cleveland, held that federal courts lacked admiralty jurisdiction over an aviation tort claim where a plane during a flight wholly within the US crashed in Lake Erie. Although maritime locus was present, the Court excluded admiralty jurisdiction because the incident was "only fortuitously and incidentally connected to navigable waters" and bore "no relationship to traditional maritime activity." However, this historical case left a milestone question: whether an aircraft disaster occurred on navigable water triggers the admiralty jurisdiction, only for the reason that it was for international transportation? This article is to explore the meaning of admiralty jurisdiction over aviation accidents at US courts. Given that the aircraft engaged in transportation of passenger and goods as the vessels did in the past, the aviation has been linked closely with the traditional maritime activities. From this view, this article reviews a decision delivered by the Seventh Circuit regarding the aviation accident occurred on July 6, 2013 at San Francisco International Airport.

An Investigation on the Optimal Ship Size for Chemical Tankers by Main Shipping Routes (케미컬 탱커선 운항노선별 최적선형에 관한 연구)

  • Kim, Jae-Ho;Kim, Taek-Won;Woo, Su-Han
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.439-450
    • /
    • 2015
  • This study objects to find characteristics in chemical tanker markets and to determine optimal chemical tanker size using a total shipping cost in main trading route of asia chemical tankers .Precedent studies of determination of the optimal ship size and case studies about chemical tankers was carried out and tried to introduce a cost model which is applicable to chemical tanker. This study is dependant on numerical analysis and involves scenario analysis to minimize sensitivity of results. This analysis shows as follows. First, 12,000DWT tanker is an optimal size on the 'Far East-Middle East' services, 9,000DWT tanker is a most competitive on the 'Far East-South East Asia' services and 3,000DWT tanker is a most economic size on the 'Inner Far East' services at average market situation. Second, the bigger size of chemical tanker, the more competitive advantage the tanker will obtain when bunker fuel prices rise. Small size ship gets more competitive during bunker prices down. Third, market fluctuation of time charter rate for chemical tanker is less than 20% against its average time charter hire which means less volatile. And tanker's competitiveness per each size is remained mostly same when time charterer rates rise at same proportion. Fourth, bigger size chemical tankers have cost advantages when tanker's quantity of each part cargo increase. And small-sized tanks are more competitive when part cargo scales decrease. For the last, ship's port stay strongly influences on the determination of the optical tanker size. When vessel has shorter port stay, bigger-sized tanker will be more competitive and even can be competitive if applies in short voyage as well.